American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. **Research Article** 1 **Cold Hardiness of Vitis vinifera Roots** 2 Eric J. Gale^{1,3} and Michelle M. Moyer²* 3 ¹Ste Michelle Wine Estates, 660 Frontier Road, Prosser, WA 99350; ²Department of 4 Horticulture, Washington State University Irrigated Agriculture Research and Extension Center, 5 24106 N. Bunn Road, Prosser, WA 99350; and ³ formerly of the Department of Horticulture, 6 7 Washington State University Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350. 8 *Corresponding author (michelle.moyer@wsu.edu; 509-786-9234) 9 Acknowledgments: Work presented here was completed in partial fulfillment of a Master of 10 Science in Horticulture from Washington State University. Funding was provided by the 11 Washington State University Irrigated Agriculture Research and Extension Center and the 12 13 Washington State University Viticulture and Enology Program. Plant materials were provided by 14 the Clean Plant Center Northwest. Thank you to Dr. Amit Dhingra and Dr. Markus Keller for their suggestions and insight. An additional thank you to Drs. Bill Riley and Julie Tarara for their 15 16 manuscript review. This work was partially supported by the USDA National Institute of Food and Agriculture Hatch project #226789. 17 18 Manuscript submitted Nov 2016, revised Mar 2017, Apr 2017, accepted Apr 2017 19 Copyright © 2017 by the American Society for Enology and Viticulture. All rights reserved. 20 21 **Abstract:** Grapevine buds have identifiable cold acclimation and deacclimation patterns. 22 Whether roots follow these patterns is unknown. If root cold hardiness thresholds and/or 23 acclimation patterns were better understood, mitigation strategies could be developed to reduce 24 the likelihood of root damage. This study encompassed two major objectives: 1) To improve protocols for electrolyte leakage and then quantitatively compare to differential thermal analysis; 25 and 2) To quantify whether *Vitis vinifera* roots acclimate to preconditioning temperatures. 26 Existing protocols were optimized and root cold hardiness was evaluated on own-rooted Vitis 27 vinifera 'Merlot' and 'Chardonnay'. To determine whether grapevine roots acclimate to their 28 29 environment, three preconditioning regimes were applied: ambient air temperature when vines American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. were actively growing; 12°C for one week during dormancy; and 0°C for one week during dormancy. Following preconditioning, root samples were collected and exposed to fixed temperatures: -2.0°C, -4.0°C, -6.0°C, or -8.0°C. Electrolyte leakage, the standard indicator of root cold damage, was measured. The incidence of low temperature exotherms from differential thermal analysis was used as a potential alternative to identify temperatures that cause tissue damage. Overall, Chardonnay and Merlot roots did not have dynamic cold acclimation patterns like grapevine buds. There was little variation in maximum cold hardiness (<1.2°C) regardless of preconditioning. Maximum root cold hardiness was experimentally derived for both varieties (Chardonnay median -5.9°C; Merlot median -5.7°C). Differential thermal analysis was an effective alternative method to electrolyte leakage in estimating damage thresholds for these two varieties The lethal temperature at which 10%, 50%, and 90% of roots were killed were calculated for grapevine roots, with values of -4.0°C, -5.8°C, and -7.0°C, respectively. **Key words:** cold hardiness, differential thermal analysis, electrolyte leakage, root 43 Introduction Chilling and freezing injury to plants causes millions of dollars of annual crop loss around the world (Snyder and De Melo-Abreu 2005). Because of this climactic impact upon sustainability and profitability, much effort has been invested in research on cold hardiness and cold acclimation/deacclimation in aerial portions of plants, including grapevine (Ferguson et al. 2014, Ferguson et al. 2011, Keller and Mills 2007, Mills et al. 2006, Richards 1983). In contrast, studies on root hardiness of perennial plants typically are limited to forest species of economic importance such as Scots pine (*Pinus sylvestris*) and Norway spruce (*Picea abies*) (Lindstrom #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 1986, Smit-Spinks et al. 1985). This work indicated differences between genera in absolute cold hardiness; -16°C (P. sylvestris) and -20°C (Pc. abies). Further exploration of seasonal patterns of root cold hardiness in Scots pine, Norway spruce, lodgepole pine (*Pinus contorta*), and other conifers suggests some form of cold acclimation in roots (Lindstrom and Nystrom 1987, Timmis and Worrall 1975). Currently, vineyard managers have little way of telling if winter soil temperatures have fallen to damaging levels prior to subsequent mid-season vine collapse. At that point, little can be done to salvage the vines and production during that and the next several growing seasons may be reduced or lost. If informed earlier in the season, cultural practices could be adopted to improve the possibility of vine survival from this damage. If damage requires replant, that decision can be made earlier, and in the case of Washington, limit production losses to one year. There is sparse literature on the cold hardiness of grapevine roots, and this fact is regularly commented on in studies of the grape root system (Comas et al. 2005, Richards 1983). To the author's knowledge, no research has examined the ability of grapevine roots to acclimate to seasonal variations in soil temperature. Following a winter of severe cold temperatures in Washington, Ahmedullah and Kawakami (1986) suggested an absolute lethal temperature for Concord (Vitis labruscana) roots at around -5°C. A similar study in Japan demonstrated a threshold for cold hardiness of V. vinifera 'Kyoho' roots of -4.0°C (Okamoto et al. 2000). Guo et al. (1987) demonstrated maximum cold hardiness of 19 different varieties and species including V. vinifera 'Muscat Hamburg' roots at -5.2°C, V. riparia roots at -11.4°C, and that of V. amurensis roots at -15.5°C. Thus, there appears to be species difference(s) within Vitis for maximum cold hardiness, but no literature on within-season acclimation variation. These three #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. studies, with the most recent study taking place 17 years ago, make up the entire body of knowledge on grapevine root hardiness. Current technological advances in assessing root cold hardiness merit a reexamination of these results with additional exploration into cold hardiness acclimation. 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 Electrolyte leakage (EL) analysis is the gold standard for root cold hardiness estimation and was first described by Dexter et al. (1930, 1932). In short, EL involves the measurement of conductivity of a bathing solution in which the tissues in question are soaked. In the event of damage, more electrolytes are leaked from tissue, leading to measurable increases in bathing solution conductivity. The general protocol framework described herein was developed from techniques described by Wilner (1955), Wilner (1959), Wilner et al. (1960), and McKay (1992), with technical concerns presented by Deans et al. (1995) and Whitlow et al. (1992) taken into consideration. These protocols have been used in all known published work on grapevine root hardiness (Ahmedullah and Kawakami 1986, Guo et al. 1987, Okamoto et al. 2000). However, a criticism and limitation to the use of this technique in past studies was short tissue soak times which do not allow enough time for completion of electrolyte leakage from damaged tissue, nor does it allow sufficient time for electrolyte re-uptake (Deans et al. 1995). Whitlow et al. (1992) also expressed concerns regarding the use of electrolyte leakage, and in particular, relative conductivity as a means for quantifying damage, suggesting that it does not capture membrane permeability. They suggest that a tissue ionic conductance value (g_{Ti}) should be added to account for the chemical driving force and tissue surface area; this is understandable when using tissues of varying sizes and structure (leaves, shoots) which may be difficult to normalize prior to evaluation. While we recognize the possibility of increased accuracy through the use of the (g_{Ti}) #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. in calculations, their protocols were optimized for leaf tissue, and also
had the limitation of a short soak duration. Differential thermal analysis (DTA), a rapid technique commonly used for determining grapevine bud and cane cold hardiness (Ferguson et al. 2014, Mills et al. 2006, Pierquet and Stushnoff 1980, Wample et al. 1990), requires less than 12 hours to complete. Unfortunately, in some past studies (Burr et al. 1986), a lack of distinctive high- and low-temperature exotherms for tissue (*Pinus spp.* buds) prohibited researchers from quantifying absolutely cold hardiness temperature thresholds. There is no published work indicating whether root tissues have the ability to supercool or acclimate to sub-freezing temperatures like grapevine buds; such a scenario seems unlikely given the different tissue organization and connectivity of these two organs (Ashworth 1990). Because of the lack of published information, DTA was included in this study to determine whether root exotherm patterns and EL were correlated, as the adoption of a more rapid evaluation method is more amenable for the development of grower-related advisory systems. The objectives of this study were twofold: First, to improve protocols for EL and then quantitatively compare to DTA to determine a more rapid method for root cold hardiness assessments; and second, to quantify whether *Vitis vinifera* roots acclimate to preconditioning temperatures. ## **Materials and Methods** Data were generated simultaneously for both evaluating and optimizing EL protocols against DTA, and to determine root cold acclimation and maximum hardiness. A diagram of the process is in Supplemental Fig. 1. #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. ## Plant materials 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 For these studies, V. vinifera 'Chardonnay' and 'Merlot' were selected, based on differences seen in their acclimation and deacclimation patterns as measured in dormant buds (Ferguson et al. 2011). Dormant cuttings of both varieties were rooted in Mar 2014. Source material was from the grapevine foundation block of the Clean Plant Center-Northwest (Prosser, WA), which is a repository of plant material that has undergone virus elimination. Cuttings were callused and rooted in a plywood callusing box filled with perlite (Therm-o-Rock West, Inc., Chandler, AZ), covered with a heating mat (Hydrofarm®, Petaluma, CA) set to 25°C and damp burlap bags to retain moisture. Rooted plants were potted on 17 May 2014 in 13 L blow-molded plastic nursery pots (#3, McConkey Grower Supplies, Sumner, WA). Potting media consisted of 1:1:1 potting mix (Sunshine Mix #3 Professional Growing Mix, Sun-Gro Horticulture, Agawam, MA): peat moss (Nature's®, Sun-Gro Horticulture, Agawam, MA): and perlite (Therm-o-Rock West, Inc., Chandler, AZ). Plants were moved to the greenhouse, grown for 5 wk, then relocated to outdoor above-ground plant beds. Irrigation was delivered via drip two times daily for 10-min intervals at a rate of 2 L/hr (approximately 0.66 L/plant/day). During times of extreme heat, the duration of drip delivery was increased to 1 L/plant/day. Plants were staked and tied to 1.5 m bamboo stakes and "hedged" if growth exceeded 0.9 m past the top of the stake; two shoots per plant were retained in year 1. In fall, plants were allowed to go dormant naturally (indicated by the formation of periderm), pruned to two, 2-bud spurs, and were placed into climate-controlled storage on 10 Nov 2014. Temperatures in cold storage varied between 7°C and 15°C with an average of 12°C. Storage conditions were under continuous darkness, with the exception of light used when plant materials were being removed. In 2015, the same vines were moved out of cold #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. storage on 5 Jun and given 20 g of nitrogen urea (46-0-0). Irrigation was delivered as in 2014; four shoots developed. Vines were moved back into cold storage after periderm formation in the fall, pruned to two, 2-bud spurs, and placed into climate controlled storage on 15 Oct 2015. Dormant vines were used for various root cold hardiness assays in both years (2014-2015, and 2015-2016) of the study. # Electrolyte Leakage Protocol Optimization The duration of the "soak" time needed to capture complete electrolyte leakage and potential partial electrolyte re-uptake is one area that has been highlighted as a point of change in recent literature on the subject (Deans et al. 1995). Healthy tissue, which releases small amounts of electrolytes when soaked, needs enough time to complete leakage to subsequently be used to "zero" the conductivity of the bathing solution. To determine the duration of an adequate soak time for healthy grapevine roots, 20 replications of Chardonnay root tissue (1.0 to 2.0 mm diameter, 1 cm long) were collected and placed individually in 15 mL conical tubes with 8 mL of deionized water at 4.0°C and allowed to soak for 7 days. Solution conductivity was measured daily for each replication (S230 SevenCompactTM Conductivity meter, Mettler-Toldeo, Columbus, OH USA). The minimum number of days required for maximum electrolyte leakage was determined and used in all subsequent assays. To determine the duration of an adequate post-treatment (post-freeze) soak time for grapevine roots, 20 replications of Chardonnay root tissue (1.0 to 2.0 mm diameter, 1 cm long) were collected and placed individually in 15-mL conical tubes with 8 mL of deionized water, held at -80°C for 12 hr (to ensure complete kill of the tissue), thawed at room temperature, and allowed to soak in the deionized water for 10 d at 4°C. Conductivity was measured daily for each #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. replication. The minimum number of days required for maximum electrolyte leakage was determined and that post-damage soak duration was used in all future assays. To begin optimizing protocols for grapevine roots, it was necessary to determine the temperature range needed to evaluate potential cold damage to root tissue. The original freezing program for grapevine buds (Mills et al. 2006) was applied to 20 dormant Chardonnay root replications during this preliminary testing phase. The program slowly reduces temperature from 4°C to -40°C at 4°C/hr, and was chosen as the test program during protocol development due to its general accepted use in grape cold hardiness experiments. The programmable freezer setup was the same as that described by Wample et al. (1990). Following these initial tests, a freeze protocol was designed specifically for roots, which attempted to mimic the slower temperature variations of the soil compared to those of the air. Slower chilling also minimizes inaccurate exotherm interpretation resulting from the development of unrealistic ice formation sites within the tissues (Burke et al. 1976). The programmed freeze temperature protocols are described in Table 1, and final selected temperature minimums were -2, -4, -6, and -8°C. ## Determining Cold Hardiness Following Preconditioning Vines were subjected to three preconditioning temperature regimes prior to assessment of root cold hardiness in both 2014-2015 and 2015-2016 (experiment conducted twice). Twenty vines of each variety were used for each preconditioning regime in each year. The first preconditioning regime occurred during active vine growth: vines were subjected to ambient temperature. Typical daytime high temperatures during sampling were 28°C to 32°C and nighttime low temperatures ranged from 14°C to 21°C (AgWeatherNet 2016). The other preconditioning regimes were imposed when vines were fully dormant after 3 wks in cold #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. storage: 1) vines were brought out of cold storage and held at a consistent temperature of 12°C in a dedicated cold storage unit for a minimum of 1 wk; and 2) vines were brought out of cold storage and held at a consistent temperature of 0°C in a dedicated cold storage unit for a minimum of 1 wk. To ensure that root temperature equilibrated with air temperature, temperature sensors (HOBO, U-Series, Onset Computer Corporation, Bourne, MA, USA) were placed in the pots and temperature was monitored over the first two days of placement into cold storage. Root temperature stabilized to air temperature within 12 hours (*data not shown*). At the end of preconditioning, root tissue was sampled and subjected to programmed freezing as described below. Two root/soil samples per plant were collected using a 2.54 cm diameter soil corer inserted to the floor of the pot equidistant between the vine main trunk and the pot boundary (approximately 17 cm in length). Soil cores were rinsed through a 2.0 mm pore mesh sieve (U. S. Standard Sieve Series, The W. S. Tyler Company, Mentor, OH) to separate root debris from the soil matrix. Roots were then washed with tap water to remove excess soil and rinsed
with deionized water to remove any surface electrolytes. Following this rinsing procedure, roots were sorted, keeping those 1.0 to 2.0 mm in diameter. Frayed root ends were cut with a razor blade and discarded. Ten within-treatment replications weighing 0.040 to 0.055 g (Model XS64, Mettler-Toledo©, Schwerzenbach, Switzerland) were retained. Samples were soaked for 24 hr in 8 mL of deionized water in 15 mL conical tubes at 4°C (Falcon™ Conical Centrifuge tubes, Sigma-Aldrich Co. LLC., Darmstadt, Germany) for EL analysis to collect baseline electrolyte leakage prior to treatment. Following the collection and initial processing of root materials subjected to each of the #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 preconditioning treatments (described above under "Plant Materials"), conductivity measurements of the bathing solution were recorded following the 24 hr initial soak. As previously mentioned, this value was used to zero the conductivity of the bathing solution. Roots were then removed from tubes (with care to remove as little bathing solution as possible), dried with a task wipe (Kimberly-ClarkTM Professional Kimtech Science KimwipesTM, Dallas, TX), and were individually wrapped in a 6 cm x 6 cm piece of aluminum foil to create a small packet. These 10 packets per variety and preconditioning regime were then placed into individual thermoelectric modules in the programmable freezer as described by Mills et al. (2006). Following the programmed freezing protocol, root samples were removed from the foil packets and returned to their original 15 mL tubes (containing original bathing solution). Samples were allowed to soak for 7 d, and solution conductivity was measured on day 7. The sample tubes were then held at -80°C a minimum of 10 hr to kill the tissue. Following this, the samples were thawed and held at 4°C for 7 d. On day 7, a final conductivity measurement was recorded. Relative conductivity was calculated to estimate tissue damage $(R_t = L_t / L_k)$, where $L_t =$ conductance of bathing solution from a sample frozen at temperature (t) in the programmable freezer and L_k = conductance of bathing solution from sample frozen at temperature (t), soaked for 7 d, and then killed following -80°C freeze (Green and Warrington 1978). Relative conductivity values above 0.5 are associated with dead tissue and values below 0.5 indicate live tissue or that which is able to fully recover (Green and Warrington 1978). Relative conductivity is an alternative means for interpreting electrical conductivity data; historically electrical conductivity was compared to visual ratings of damage to quantity treatment effects. Relative conductivity is faster, and yields similar results (Deans et al. 1995). The lethal temperatures #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. when 10% (LT₁₀), 50% (LT₅₀), and 90% (LT₉₀) of tissues were killed were also calculated. The programmable freezer used to reproduce controlled freezing events was also equipped to capture LTE and HTE of freezing tissue. The incidence of exotherm occurrence (indicating tissue damage; HTE = apoplastic freezing; LTE = symplastic freezing) was compared to relative conductivity values for each sample to determine whether DTA could be used as a rapid substitute for the EL assay. Statistical analysis was completed using Minitab® 17 (Minitab 17 Statistical Software, State College, PA, USA). Analysis of variance and Tukey's HSD were used to determine differences among treatments of all analyses other than that for EL year-to-year varietal comparisons, which were carried out using two-sample t-tests. These results were confirmed using an ANOVA mixed model with year, variety, and preconditioning as fixed effects, and the relative conductivity values following each programmed freeze (-2°C, -4°C, -6°C, -8°C) as the response variable. Departure from normality was not great enough to warrant transformation of the data (McDonald 2014). Statistical differences were assigned at p < 0.05. DTA efficacy at predicting tissue death was calculated by comparing outcomes to EL evaluations and calculating true positives (where positives were determined by the presence of an exotherm peak, or in other words, tissue death), true negatives, false positives, and false negatives. The sensitivity (true positive rate), specificity (true negative rate), positive predictive value (probability of predicting a positive event and it actually occurring), and negative predictive value (probability of predicting negative event and it actually occurring) (Ott and Longnecker 2001) of DTA as an assay was then calculated. 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 249 Results To narrow the range of temperatures evaluated for cold damage thresholds, a preliminary experiment using the grape bud freeze program (Mills et al. 2006) on roots was conducted. In that experiment, 100% of exotherm peaks from root tissue occurred between -4.0°C and -7.9°C, with a mean of -5.9°C and a standard deviation of 1.1°C (Fig. 1A). The median temperature at which exotherms were observed was -6.0°C. There were no exotherms below -7.9°C. Only one exotherm was apparent for each root tissue sample (rather than one HTE and one LTE). There did not appear to be low and high temperature exotherms (LTE and HTE, respectively) that could be differentiated. From this, temperatures between -2°C and -4°C were selected to represent limited tissue damage; -6°C represented variable tissue damage; and -8°C represented complete tissue damage for subsequent experiments. Given the small differences between these temperatures, an alternative freezing program was selected for the actual experiments, as presented in Table 1 and described in the Materials and Methods. Freeze data from test runs of Merlot root tissue were found to be encompassed by the parameters set by Chardonnay, so a full evaluation and separate protocol development for Merlot was deemed unnecessary. ## Electrolyte Leakage Protocol Optimization Of the total potential electrolytes that can be leaked in healthy (undamaged) excised root tissue, an average of $84 \pm 3.8\%$ of the total electrolytes that were going to be released were released into the bathing solution within 24 hrs of a pre-treatment soak (Fig. 1B). Because the leakage of uninjured tissue is of much smaller magnitude (3x to 5x less) than that of damaged tissue, and because of the relative shape of the leakage curve, the 24 hr presoak was deemed sufficient to calibrate the bathing solution for potential pre-treatment differences, and was incorporated into #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. all EL protocols. 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 After complete tissue death following exposure to -80°C, 10% of samples demonstrated complete leakage by day 6 post-thaw (Fig. 1C). By day 7, 90% of samples had reached maximum electrolyte leakage, and at day 8 100% of samples had reached maximum electrolyte leakage. Seven days of leakage time was deemed adequate to elicit leakage and minimize protocol time; this soak time was incorporated into all EL protocols thereafter. ## **Determining Cold Hardiness Following Preconditioning** Regardless of year or variety, there was no evidence that temperature preconditioning influenced maximum root cold hardiness. Results from mixed model ANOVA are shown in Table 2. Year was a significant effect in the -6.0°C and -8.0°C freezes. Preconditioning was a significant effect in the -2.0°C, -4.0°C, and -8.0°C freezes. The year-variety interaction was significant for the -4.0°C freeze. The year-preconditioning interaction was significant in the -2.0°C, -6.0°C, and -8.0°C freezes. The variety-preconditioning interaction was significant for all programmed freeze temperatures. However, interpretation of statistical significance should not be confused here with practical significance. This is especially the case when data has a threshold response, such as the case with the interpretation of relative conductivity values. As such, a graphical representation of these values and differences are also presented to highlight where these differences occur, and if they are practically important. In both 2014 (Fig. 2A and 2B, Fig. 3A and 3B), and 2015 (Fig. 2C and 2D, Fig. 3C and 3D), there was no consistent pattern in preconditioning being associated with significantly higher or lower relative conductivity or incidence of exotherms to -2°C, -4°C, -6°C or -8°C temperature exposure. The only consistent pattern in the data was in the relative conductivity values and exotherm incidence within the cold #### American Journal of Enology and Viticulture (AJEV). doi:
10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 temperature exposures regardless of variety, year, or preconditioning. The -8.0°C exposure was associated with leakage values which surpassed the relative conductivity threshold (0.5) 100% of the time in all cases, and had 100% incidence of exotherms. Conversely, the -2.0°C and -4.0°C exposures never surpassed the threshold and only exhibited exotherms 1.7% of the time. The -6.0°C exposure was variable; 31.7% of the time relative conductivity values exceeded 0.5 and in 30.8% of samples the exposure resulted in an exotherm (Fig. 2 and 3). Values of relative conductivity are in Table 3. While individual preconditioning regimes often resulted in a relative conductivity that was different from others at a specific temperature exposure, in almost all cases the average relative conductivity for all preconditioning regimes at a specific temperature exposure were either well below, or well above the 0.5 threshold. For example, in Chardonnay during 2014, exposure to -2.0°C resulted in higher relative conductivity values in the dormant preconditioning at 0°C than in the dormant 12°C preconditioning (Fig. 2A), yet all preconditioning values at this low temperature exposure remained under 0.5. Similarly, in 2015 (Fig. 2C), exposure to -2.0°C resulted in lower relative conductive values in dormant 12°C preconditioning than the other two regimes, but relative conductivity for all pretreatments at this low temperature exposure remained below 0.5. In Merlot in 2014 (Fig. 2B), exposure to -2.0°C resulted in lower relative conductivity (less damage) for the dormant 12°C preconditioning than the other preconditioning regimes, but all remained under 0.5. Following the -8.0°C exposure, ambient outdoor preconditioning showed significantly higher relative conductivity than the 0°C preconditioning, but all preconditioning relative conductivity values remained above 0.5. In 2015 (Fig 2D), following a -8.0°C low temperature exposure, higher relative conductivity occurred in the 12°C #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. preconditioning than in the 0°C preconditioning but all relative conductivity values among preconditioning regimes were above 0.5. Preconditioning was less a factor in tissue damage than was degree of low temperature exposure. Similar results, and a lack of consistent patterns between root preconditioning and cold hardiness, were also seen across years and varieties in DTA (Fig. 3). In 2014 in Chardonnay (Fig. 3A), the -6.0°C low temperature exposure resulted in higher exotherm incidence in the dormant 0°C preconditioning than in the actively growing, ambient outdoor temperature preconditioning. At the same exposure temperature in 2015 (Fig. 3C), the actively growing preconditioning had a higher exotherm incidence than the other preconditioning regimes. In 2014 in Merlot (Fig. 3B), no significant differences in exotherm incidence were found following any of the exposures, and in 2015 (Fig. 3D), following a 6.0°C exposure, there was a higher exotherm incidence in the 12°C preconditioning than in the other preconditioning regimes. As seen in EL, preconditioning was not a good predictor of maximum cold hardiness. Few differences were observed between varieties in response to preconditioning and freeze protocols (Fig. 4). In most cases, Merlot and Chardonnay responses mirrored each other. There were a few instances where significant differences were biologically meaningful; for example, in 2015 ambient outdoor preconditioning (Fig. 4B) and the 12°C preconditioning (Fig. 4D) following the -6°C freeze protocol. Other significant differences were found between varieties, but as was observed in relative conductivity, all of these differences occurred between tissues that both fell well below or above the 0.5 damage threshold. #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. ## Comparing Assays When comparing samples which were first evaluated with DTA (observed for exotherms) and followed by EL (comparing their relative conductivity after a sub-zero temperature exposure; Fig. 5), samples producing an exotherm also had a relative conductivity rating above the 0.5 threshold 97.9% of the time. There was a high level of similarity between the incidence of DTA HTE exotherm events and the EL relative conductivity ratings that indicate damage; DTA was a relatively robust assay with high sensitivity (98.1%), specificity (96.2%), positive predictive value (98.4%), and negative predictive value (95.6%). 345 Discussion Grapevine roots did not acclimate to preconditioning temperatures, and maximum cold hardiness showed little variation regardless of preconditioning. We expected more damage following preconditioning at the actively growing, ambient outdoor temperature than following dormant preconditioning at 0°C, yet this was not the case. There were no consistent differences in tissue damage among preconditioning regimes at each of the low temperature exposures (-2.0°C, -4.0°C, -6.0°C, or -8.0°C). Regardless of preconditioning, the median freezing temperatures for Chardonnay and Merlot root tissues were -5.9°C and -5.7°C, respectively. The LT₁₀, LT₅₀, and LT₉₀ were calculated, with values of -4.0°C, -5.8°C, and -7.0°C, respectively. Electrolyte leakage accuracy was found to be improved when adequate tissue soak times were used. Differential thermal analysis was found to have high levels of agreement with EL when the presence of an exotherm was used to indicate tissue vitality. Further examination into the possibility of root order affecting hardiness, and further evaluation of the technique when #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. comparing between different species of *Vitis* is necessary prior to using DTA as a replacement for EL. Electrolyte leakage was chosen as the standard to which DTA was compared. The EL protocols presented here used a calculated variable, relative conductivity (comparing leakage before and after a low temperature event), to rate samples as alive or dead (Deans et al. 1995, Wilner 1960), where a threshold of 0.5 or higher was delineated as the point where the tissue was no longer viable (Green and Warrington 1978, Hallam and Tibbits 1988). During the protocol optimization process for EL we found that extending soak times to 24 hr prior to tissue treatment and allowing tissue to soak for 7 d following treatment was optimal for assessment. In the literature, the accuracy of DTA to determine cold hardiness thresholds is questioned if the procedure fails to produce clearly recognizable HTE and LTE peaks (Burr et al. 1986). However, other authors who have used the method, particularly on conifers, have reported a lack of multiple exotherms (Coleman et al. 1992), but still viewed the procedure as a viable evaluation option. During this study, only a single, individual exotherm per sample was observed when root tissue was subjected to sub-freezing temperatures. This suggests that grapevine roots do not have the ability to supercool, and the HTE coincides with cellular freezing and tissue damage/death. Strong agreement between EL and DTA here suggests that DTA may be used as a fast and reliable method for evaluating grapevine root cold hardiness in *Vitis vinifera*. Further evaluation of different *Vitis s*pecies (such as a comparison between *V. vinifera and V. amurensis* (-15.5°C) Okamoto et al. 2000) comparing DTA with EL is necessary before completely validating using DTA as a general substitute for EL, particularly for the development of management-based temperature thresholds. #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 The relative conductivity threshold that is used to distinguish live from dead tissue is 0.5, which assumes a lack of tissue recovery if more than 50% of available electrolytes are leaked. Following comparison between EL and DTA, the 0.5 threshold failed to capture a small number of samples that produced exotherms but subsequently were rated as alive by EL. We suggest that the relative conductivity threshold for live-dead determination in grapevine roots be lowered to 0.4. This value better captures damage in grapevine root tissues following sub-freezing temperature exposure and provides a more conservative estimate by reducing false positives (results indicating live tissue, when in fact it is dead). Following the proposed lowering of the live-dead threshold to 0.4, sensitivity, specificity, positive predictive value, and negative predictive
value improved to 98.9%, 96.3%, 98.4%, and 97.5%, respectively. This finding corroborates the suggestion by Deans et al. (1995) that decreasing the relative conductivity threshold from 0.5 to 0.23 in *Quercus patraea* increased accuracy in assessing tissue death. Of course, this threshold is specific for the size of roots used in this study; additional work on establishing threshold will be needed if larger roots are used, or if conclusions based on roots of a specific order are to be made. Additional improvements in protocols could come from evaluating the type and size of roots used for cold hardiness assays. Roots smaller than 2.0 mm diameter comprise the overall majority of root mass (approximately 80%; Bassoi et al. 2003), so their testing is the logical place to start when examining tissues most affected by cold damage. Small diameter roots (< 2 mm) are the standard sample diameter for root hardiness testing of conifers (Coleman et al. 1992) and apples (Wilner et al. 1960). Okamoto et al. (2000) found that larger diameter roots exhibited less cold hardiness than fine roots in *Vitis*. A reexamination of this finding using #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. optimized EL and DTA would shed light on its validity, furthering our ability to pinpoint lethal soil temperature thresholds for grapevine roots. 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 It does not appear that grapevine roots can acclimate to cold temperatures to the same extent as grapevine buds. In both Merlot and Chardonnay, across both years, there were instances where roots exposed to warmer temperatures prior to freezing were more cold hardy than roots exposed to colder temperatures, based on absolute EL values. This is not what one would expect if roots were acclimating in the same way as buds (Ferguson et al. 2014). However, while there were differences, the absolute level of relative conductivity was still below the damage threshold of 0.5. Differences across preconditioning regimes do need to be interpreted with caution. While significantly different from each other, if values are below the "kill" threshold for relative conductivity, they may not be biologically different. Interestingly, there were very few instances where relative conductivity values fell near the dead/alive threshold of 0.5. The only time that this occurred was after exposure to -6.0°C; while the average relative conductivity may have approached the threshold, the distribution of individual data points were either well below or well above the threshold. In other words, root tissue response at this exposure temperature was either substantially above or below the threshold, as this was a transition temperature for potential damage. Lack of cold acclimation is likely a reflection of the evolutionary response to temperature variation in the rhizosphere, and the conditions under which the plant evolved. For grapevine buds which are surrounded by air, cold temperatures and large temperature swings are a constant threat during dormancy. On the other hand, grapevine roots are surrounded by soil which has an infinitely larger thermal mass than air, and subsequently changes temperature slowly. Because of #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. temperature buffering in the soil, grapevine roots likely did not evolve the complex mechanisms of acclimation essential to survival above the earth's surface like grapevine buds, although the absolute difference between grapevine species in their root cold hardiness does likely differ as suggested by Okamoto et al. (2000) given the wide geographical distribution of different *Vitis* species. This study, limited to Chardonnay and Merlot, found little difference in maximum root cold hardiness. Maximum hardiness of grapevine roots for several *Vitis* spp. have been described previously (Ahmedullah and Kawakami 1986, Guo et al. 1987, Okamoto et al. 2000) and correspond with the levels found in the present study, where median values were -5.7°C to -5.9°C. We suspect that the EL protocols used in this study parsed out roots that were 'damaged but will recover' more accurately than past studies in which there were shorter intervals between the damaging events and ultimate data collection (Deans et al. 1995). Soil temperatures in Washington State rarely are driven below the maximum hardiness temperatures calculated from this study. Potentially damaging soil temperatures do occur during particularly cold and dry winters, especially on sites with shallow soil and low water holding capacity. Desiccation injury could be a major factor in what typically is diagnosed as root freeze damage *in situ*. Drought tolerant rootstocks with deeper rooting patterns offer potential to decrease winter root damage because soil temperature variation is dampened with depth. Smart et al. (2006) suggested that overall rooting patterns are more heavily influenced by soil properties than by genotype. Irrigation is also important. High soil water content in fall damps temperature fluctuations because of the higher heat capacity of water than dry soil. In-season irrigation can also play a role in mitigating potential root damage. For example, frequent short #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. duration irrigation sets encourage root development nearer the soil surface, exposing the root system to greater temperature fluctuations than if the roots were established deeper (Anderson et al. 2003). Washington State's grape industry predominantly uses own-rooted grapevines. Consequently, this study evaluated the cold hardiness of *V. vinifera* roots. While *Vitis* more commonly used as rootstocks were not included, we hope that the information and techniques described within will provide a foundation for further study. 453 Conclusion When examining viability assessment techniques for grapevine roots, electrolyte leakage and differential thermal analysis were comparable for two *V. vinifera* varieties. A modified electrolyte leakage protocol was developed that optimized soak periods for maximum ion release while minimizing assay duration. Differential thermal analysis, once questioned in tissues that failed to produce two distinct exotherms (HTE and LTE), was faster and had similar accuracy as EL in determining the freezing point of excised grapevine root tissues. This study found little evidence of grapevine root acclimation to cold temperatures in the V. vinifera varieties evaluated. Maximum root hardiness for Chardonnay and Merlot had median values of -5.9°C and -5.7°C, respectively. LT_{10} , LT_{50} , and LT_{90} values were calculated for grapevine roots, with values of -4.0°C, -5.8°C, and -7.0°C, respectively. American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. | 465 | Literature Cited | |-------------------|--| | 466
467 | AgWeatherNet. 2016. Historical Weather Data - WSU Hamilton Station. Accessed: 1 November 2016. Available online at: http://weather.wsu.edu/?p=93050 | | 468
469
470 | Ahmedullah M and Kawakami A. 1986. Evaluation of laboratory tests for determining the lethal temperature of <i>Vitis labruscana</i> (BAILEY) 'Concord' roots exposed to subzero temperatures. Vitis 25:142-150. | | 471
472 | Anderson LJ, Comas LH, Lakso AN and Eissenstat DM. 2003. Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytol 158:489-501. | | 473
474 | Ashworth EN. 1990. The formation and distribution of ice within Forsythia flower buds. Plant Physiol. 92:718-725. | | 475
476 | Bassoi LH, Hopmans JW, Jorge LAC, Alencar CM and Silva JAM. 2003. Grapevine root distribution in drip and microsprinkler irrigation. Sci Agric 60:377-387. | | 477
478 | Burke MJ, Gusta LV, Quamme HA, Weiser CJ and Li PH. 1976. Freezing and injury in plants. Annu Rev Plant Physiol 27:507-528. | | 479
480
481 | Burr KE, Tinus RW, Wallner SJ and King RM. 1986. Comparison of four cold hardiness tests on three western conifers. <i>In</i> Proceedings of the Combined Western Forest Nursery Council and Intermountain Nursery Association Meeting. pp. 87-95. | | 482
483 | Coleman MD, Hinckley TM, McNaughton G and Smit BA. 1992. Root cold hardiness and native distribution of subalpine conifers. Can J For Res 22:932-938. | | 484
485
486 | Comas LH, Anderson LJ, Dunst RM, Lakso AN and Eissenstat DM. 2005. Canopy and environmental control of root dynamics in a long-term study of Concord grape. New Phytol 167:829-840. | | 487
488
489 | Deans JD, Billington HL and Harvey FJ. 1995. Assessment of frost damage to leafless stem tissues of <i>Quercus
patraea</i> : A reappraisal of the method of relative conductivity. Forestry 68:25-34. | | 490
491 | Dexter ST, Tottingham WE and Graber LF. 1930. Preliminary results in measuring the hardiness of plants. Plant Physiol 5:215-223. | | 492
493 | Dexter ST, Tottingham WE and Graber LF. 1932. Investigations of the hardiness of plants by measurement of electrical conductivity. Plant Physiol 7:63-78. | | 494
495
496 | Ferguson JC, Moyer MM, Mills LJ, Hoogenboom G and Keller M. 2014. Modeling dormant bud cold hardiness and budbreak in twenty-three <i>Vitis</i> genotypes reveals variation by region of origin. Am J Enol Vitic 65:59-71. | #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 - Ferguson JC, Tarara JM, Mills LJ, Grove GG and Keller M. 2011. Dynamic thermal time model of cold hardiness for dormant grapevine buds. Ann Bot 107:389-96. - Green LM and Warrington IJ. 1978. Assessment of frost damage in radiata pine seedlings using the diffusate conductivity technique. New Zeal J For Sci 8:344-350. - Guo XW, Fu WH and Wang GJ. 1987. Studies on cold hardiness of grapevine roots. Vitis 26:161-171. - Hallam PM and Tibbits WN. 1988. Determination of frost hardiness of *Eucalyptus* using the electrical conductivity of diffusate in conjunction with a freezing chamber. Can J For Res 18:595-600. - Keller M and Mills LJ. 2007. Effect of pruning on recovery and productivity of cold-injured merlot grapevines. Am J Enol Vitic 58:351-357. - Lindstrom A. 1986. Freezing temperatures in the root zone effects on growth of containerized *Pinus sylvestris* and *Picea abies* seedlings. Scand J For Res 1:371-377. - Lindstrom A and Nystrom C. 1987. Seasonal variation in root hardiness of container-grown Scots pine, Norway spruce, and lodgepole pine seedlings. Can J For Res 17:787-793. - McDonald JH. 2014. One-way ANOVA. *In* Handbook of Biological Statistics. pp. 145-156. Sparky House Publishing, Baltimore, Maryland. - McKay HM. 1992. Electrolyte leakage from fine roots of conifer seedlings: a rapid index of plant vitality following cold storage. Can J For Res 22:1371-1377. - Mills LJ, Ferguson JC and Keller M. 2006. Cold-hardiness evaluation of grapevine buds and cane tissues. Am J Enol Vitic 57:194-200. - Okamoto G, Wang S and Hirano K. 2000. Cold resistance in root and cane of own-root 'Kyoho' - grapevines. *In* Scientific Reports of the Faculty of Agriculture. pp. 23-29. Okayama University. - Ott RL and Longnecker M. 2001. Bayes' Formula. *In* An Introduction to Statistical Methods and Data Analysis. C. Crockett (ed.), pp. 136-140. Thomson Learning, Pacific Grove, CA. - Pierquet P and Stushnoff C. 1980. Relationship of low temperature exotherms to cold injury in vitis riparia Michx. Am J Enol Vitic 31:1-5. - Richards D. 1983. The grape root system. *In* Horticultural Reviews. pp. 5:127-168. John Wiley & Sons, Inc., Hoboken, New Jersey. - 527 Smart DR, Schwass E, Lakso A and Morano L. 2006. Grapevine rooting patterns: A comprehensive analysis and review. Am J Enol Vitic 57:89-104. American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. | 529
530
531 | Smit-Spinks B, Swanson BT and Markhart III AH. 1985. The effect of photoperiod and thermoperiod on cold acclimation and growth of <i>Pinus sylvestris</i> . Can J For Res15:453-460. | |-------------------|---| | 532
533
534 | Snyder RL and De Melo-Abreu JP. 2005. Frost protection: Fundamentals, practice, and economics. Environmental and Natural Resources Series #10. Food and Agriculture Organization of the United Nations. Rome, Italy. 1:1-126. | | 535
536 | Timmis R and Worrall J. 1975. Environmental control of cold acclimation in Douglas fir during germination, active growth, and rest. Can J For Res 5:464-477. | | 537
538 | Wample RL, Reisenauer G and Bary A. 1990. Microcomputer-controlled freezing, data acquisition and analysis system for cold hardiness evaluation. HortScience 25:973-976. | | 539
540
541 | Whitlow TH, Bassuk NL, Ranney TG and Reichert DL. 1992. An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198-205. | | 542
543 | Wilner J. 1955. Results of laboratory tests for winter hardiness of woody plants by electrolytic methods. J Am Soc Hortic Sci 66:93-99. | | 544
545 | Wilner J. 1959. Note on an electrolytic procedure for differentiating between frost injury of roots and shoots in woody plants. Can J Plant Sci 39:512-513. | | 546
547 | Wilner J. 1960. Relative and absolute electrolytic conductance tests for frost hardiness of apple varieties. Can J Plant Sci 40:630-637. | | 548
549 | Wilner J, Kalbfleisch W and Mason WJ. 1960. Note on two electrolytic methods for determining frost hardiness of fruit trees. Can J Plant Sci 40:563-565. | | 550 | | 551 ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Table 1** Programmed freeze protocols to determine the temperature at which damage occurs in grapevine root tissue. Total duration for Steps 4 and 6 depended on the minimum temperature selected. | Step | Duration (Minutes) | Action | |------|--------------------|--| | 1 | 15 | Decrease sample temperature to 4°C from ambient temperature | | 2 | 60 | Hold at 4°C | | 3 | 180 | Decrease sample temperature to -2°C at -2°C/hr | | 4 | 0-360 | Decrease temperature to desired freeze temperature at 1°C/hr | | 5 | 30 | Hold at minimum freeze temperature (-2°C, -4°C, -6°C, or -8°C) | | 6 | 90-180 | Increase sample temperature to 4°C at 4°C/hr | | 7 | Variable | Hold at 4°C until samples are removed from freezer | **Table 2** Mixed model ANOVA results with year, variety, and preconditioning as fixed effects, and the relative conductivity values following each programmed freeze (-2°C, -4°C, -6°C, -8°C) as the response variable. Significant differences are denoted with an asterisk (p < 0.05). | | Programmed freeze temperature | | | | | |-------------------------|-------------------------------|--------|--------|--------|--| | | -2.0°C | -4.0°C | -6.0°C | -8.0°C | | | Year | 0.125 | 0.490 | 0.038* | 0.025* | | | Variety | 0.053 | 0.995 | 0.827 | 0.843 | | | Preconditioning | 0.000* | 0.000* | 0.283 | 0.013* | | | Year*Variety | 0.485 | 0.038* | 0.637 | 0.195 | | | Year*Preconditioning | 0.000* | 0.786 | 0.000* | 0.012* | | | Variety*Preconditioning | 0.000* | 0.000* | 0.000* | 0.000* | | ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Table 3** Mean values of relative conductivity of bathing solution for all preconditioning regimes combined across temperature exposure. Standard deviation presented in parenthesis. | | | Temperature exposure | | | | |------------|---------|-----------------------|---------|---------|---------| | Variety | Vintage | -2.0 °C | -4.0 °C | -6.0 °C | -8.0 °C | | , arrety | | Relative Conductivity | | | | | | 2014 | 0.077 | 0.089 | 0.278 | 0.866 | | Chardonnay | 2014 | (0.045) | (0.096) | (0.229) | (0.054) | | Charaonnay | 2015 | 0.083 | 0.133 | 0.364 | 0.906 | | | | (0.046) | (0.062) | (0.373) | (0.050) | | | 2014 | 0.086 | 0.122 | 0.281 | 0.874 | | Merlot | 2014 | (0.055) | (0.168) | (0.327) | (0.070) | | 1,101101 | 2015 | 0.103 | 0.100 | 0.353 | 0.887 | | | | (0.097) | (0.093) | (0.308) | (0.121) | ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Figure 1** Optimization of cold hardiness evaluation protocols. (**A**) Differential thermal analysis trace after subjecting root samples to the freeze protocols for grapevine buds (Mills et al. 2006). Graph was truncated at -10°C due to lack of peaks below -8°C. (**B**) Conductivity of bathing solution of uninjured grapevine roots. Samples were collected by length rather than mass, explaining the variance in absolute conductance values for the 20 replicates. (**C**) Conductivity of bathing solution containing damaged grapevine roots after soaking for 10 d. Samples were collected by length rather than mass, explaining the variance in absolute conductivity values for the 10 replicates. ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Figure 2** Mean relative conductivity of bathing solution for *Vitis vinifera* 'Chardonnay' and 'Merlot' roots after preconditioning followed by controlled decreases in temperature below freezing. (A) Chardonnay, 2014; (B) Merlot, 2014; (C) Chardonnay, 2015; and (D) Merlot, 2015. Relative conductivity values above 0.5 indicate dead tissue (dashed line). Error bars represent \pm SE. Different letters indicate significant differences among treatments within a low temperature exposure using Tukey's HSD $\alpha = 0.05$. Ambient = preconditioned to ambient temperature during active growth; 12° C = preconditioned during dormancy at 12° C for a minimum of 1 wk; 0° C = preconditioned during dormancy at 0° C for a minimum of 1 wk. ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Figure 3** Mean incidence of low temperature exotherms for *Vitis vinifera* Chardonnay and Merlot roots after preconditioning followed by controlled decreases in temperature below freezing. (**A**) Chardonnay, 2014; (**B**) Merlot, 2014; (**C**) Chardonnay, 2015; and (**D**) Merlot, 2015. Error bars represent standard error. Different letters indicate significant difference between treatment means within a temperature exposure
using Tukey's HSD $\alpha = 0.05$. ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Figure 4** Mean relative conductivity following preconditioning for Merlot and Chardonnay in 2014 (**A**, **C**, **E**) and 2015 (**B**, **D**, **F**). Preconditioning regimes: (**A**, **B**) active growth at ambient outdoor temperatures; (**C**, **D**) dormant vines at 12°C for a minimum of 1 wk; and (**E**, **F**) dormant vines at 0°C for a minimum of 1 wk. Relative conductivity values above 0.5 indicate dead tissue (dashed line). Error bars are standard error. Significant differences (p < 0.5) between varieties at each controlled temperature are denoted with an asterisk. #### American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 **Figure 5** Relationship between relative conductivity of root tissue and the incidence of low temperature exotherms (LTE). Relative conductivity values from electrolyte leakage were compared to whether or not differential thermal analysis indicated samples were undamaged (closed symbols; no LTE) or lethally damaged (open symbols; LTE) during programed freezes. While programmed freeze events were to set temperatures, individual thermocouples for each root sample recorded the actual temperature achieved at that root during the programmed freeze; that actual temperature is presented here. Relative conductivity values above 0.5 are rated as dead (dashed line), while those below are rated as alive. All samples above the 0.5 threshold corresponded to damaged tissue (open symbols). The majority of samples below the 0.5 threshold corresponded to undamaged tissue (closed symbols), with only 1 exception. ## American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2017.16109 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. **Supplemental Figure 1** Schematic of experimental protocols. Overview of the experimental process involving the pretreatments of grapevine material, freeze protocol temperatures, and the use of electrolyte leakage (EL) and differential thermal analysis (DTA) for assessing grapevine root viability. The chart is further subdivided into shaded areas that highlight which treatment addressed which unknown.