AJEV Papers in Press. Published online July 5, 2018.

AJEV PAPERS IN PRESS • AJEV PAPERS IN PRESS

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

1	Review Article
2	A Review of Plastics Use in Winemaking: HACCP Considerations
3	Cassandra M. Plank ¹ and Brent C. Trela ^{2*}
4 5	¹ Department of Viticulture and Enology University of California Davis, 1 Shields Avenue Davis, CA 95616; and ² 1408 N 28th St., Renton, WA 98056.
6	*Corresponding author (tel: +1.806.252.6568)
7	Acknowledgments: The authors declare no competing financial interest.
8 9	Manuscript submitted May 8, 2017; revised Dec 25, 2017, Jan 17, 2018, Jun 11, 2018; accepted Jun 25, 2018
10 11	Copyright © 2018 by the American Society for Enology and Viticulture. All rights reserved.
12	Abstract: Use of plastics is ubiquitous in food and beverage industries, with expanding usage in
13	wine production. Common plastic additives, used to modify and improve applicability and
14	durability of plastics, include phthalate plasticizers and bisphenols. Phthalates are used in many
15	products from polyvinyl chloride (PVC), lubricants, and emulsifying agents. Bisphenols such as
16	bisphenol A (BPA) and related BPA non-intent (BPA-NI) alternatives are used to harden plastics
17	and are commonly used in polycarbonate plastics and epoxy coatings. Migration of bisphenols
18	and plasticizers into wine from plastic containers and closures has been studied through the
19	utilization of analytical tools such as GC-MS and LC-MS. Foodstuffs can become contaminated
20	with plastic additives through food-contact processing and packaging materials, leading to
21	environmental and human health concerns. This work reviews current food product use and
22	regulations regarding plastic additives and potential leachates, particularly in wines, hazard
23	analysis and critical control points (HACCP) approaches, alternative plasticizers, and bio-based
24	plastics.

25 Key words: bisphenol, epoxy, leachate, packaging, phthalate, plasticizer

1

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

26

1 Introduction

27 Due to their malleability, versatility, and low cost, plastics have become ubiquitous in 28 present day products. Food stuffs may contact plastics through many pathways including food 29 packaging, long-term product storage, and food transportation. Plastics are increasingly used in 30 wine processing and packaging materials. Annually, about 8% of the world's oil production goes 31 toward producing the approximately 250 million t_m of plastics used globally, of which roughly 32 30% of plastics are used for packaging (Robertson 2013). Plastics are considered to be 33 biochemically inert and unable to penetrate through cell membranes because of their large 34 molecular size, preventing them from interacting with the endocrine system. Nevertheless, 35 additives, unreacted feedstock monomers or oligomers of the component plastics, or non-36 intentionally added substances (NIAS), which could include plastic degradation products and 37 other potential chemical side reactions from the manufacturing process, could potentially migrate 38 into the wine, may have biological consequences (Paseiro-Cerrato et al. 2017, Teuten et al. 39 2009), and may pose a food safety risk or otherwise be of concern to the quality or marketability 40 of wine.

The goal of food safety practices is to limit the presence of food-borne hazards in food at the point of consumption. Food safety hazards are usually the result of physical, chemical, or biological factors. Since food safety hazards can occur at any stage in the food chain it is essential that adequate controls be in place. Hazard and Critical Control Points (HACCP) and quality assurance systems like the International Standardization Organization (ISO) 9000 series, and its food safety derivative ISO 22000 have been developed to prevent food safety risks and consequently provide a competitive advantage to producers that implement such systems (ISO

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

48	2005). The purpose of this review is to point out potential plastics related hazards in wine that
49	could be addressed by HACCP principles. Scalping, sorption, permeation and effects on product
50	quality by plastic additives and wine are not the focus of this work and will be expanded upon in
51	a follow-up review.

52

2 **Review of Plastics**

53 Plastics are synthetic or semi-synthetic polymers made from a wide range of moldable 54 organic polymers set into a rigid or semi-elastic solid. The geometric structure, including 55 conformation, configuration, and branching of polymeric chains, and degree of crosslinking with 56 itself or other molecules determines the physical and chemical properties of the plastic. 57 Properties of polymers, including density, thickness, and transition temperatures are determined 58 by their molecular composition and structure, molecular weight, and degree of crystallinity, 59 which affects optical transparency in plastics (Krimm and Tobolsky 1951, Robertson 2013). 60 Molecular orientation of polymer chains determines whether plastics are amorphous or semi-61 crystalline (Robertson 2013, White and Spruiell 1981). Amorphous polymer chains are 62 disordered, have no melting point, and gradually soften with increasing temperature. Examples 63 of amorphous polymer chains include polystyrene (PS) and polyvinyl chloride (PVC). In 64 contrast, semi-crystalline polymers usually exhibit distinct phase transition temperatures: a sharp 65 melting and glass transition temperature (T_g) such as polyethylene (PE) and polypropylene (PP). 66 Plastic polymers can be divided into three categories: thermoplastics, theromosets, and 67 elastomers (Klein 2011). Thermoplastics consist of long, linear, saturated carbon-carbon chains 68 that extend in one dimension. Molecular chains of thermoplastics can move independently 69 because they are not crosslinked. Thermoplastics can be reused because they can be repeatedly

70	melted and solidified by heating and cooling (Robertson 2013). Unlike thermoplastics,
71	thermosets form irreversible crosslinks between chains during processing and cannot be re-
72	melted and reprocessed (Lithner et al. 2011, Robertson 2013). Elastomers share properties of
73	thermoplastics and thermosets. Elastomers have wide crosslinks between molecules, which allow
74	mobility of molecular chains resulting in soft and elastic properties. Rising temperature increases
75	elasticity, but like thermosets they cannot be melted without thermal decomposition (Shanks and
76	Kong 2013). Examples of types of plastic are given in Figure 1.
77	Due to their mechanical properties, thermoplastics are the most widely used plastics,
78	accounting for more than two-thirds of all polymers used globally (Robertson 2013). Common
79	thermoplastics belong to a few generic plastic resin families identified by the Resin Identification
80	Codes (RICs) that aid sorting and recycling in the waste stream (Table 1) (D20 Committee
81	2010). The current ASTM D7611 gives codes for the six most commonly found resin types, in
82	order from numbers 1-6: polyethylene terephthalate (PETE, PET); high density PE (HDPE);
83	PVC (V); low density PE (LDPE); PP; and PS. All other resins, including PC, acrylonitrile
84	butadiene styrene (ABS), nylon and other materials made with more than one type of resin from
85	Nos. 1-6, are marked with a No. 7 (ASTM International 2013).
86	3 Plastic Ingredients
87	3.1 Additives to Plastics
88	Additives are inorganic or organic substances that enhance the processing and properties
89	of plastics (e.g. stabilizers, plasticizers, biocides, flame retardants, pigments, and others); or act
90	as filler (e.g. carbonates and silicates) to extend the volume of material and reduce production

92	phenols and secondary aromatic amines), hydroperoxide decomposers (e.g. organosulfur
93	compounds), heat stabilizers (e.g. lead, tin and mixed metal compounds such as calcium-zinc),
94	light stabilizers (e.g. hindered amine light stabilizers [HALS]), and UV absorbers (e.g.
95	benzophenones) that inhibit the formation of free radicals and photo-oxidation reactions such as
96	those catalyzed by UV irradiation (Ceresana 2011a, 2012, 2013). Pigments are used as colorants
97	and may also confer additional properties such as UV protection (e.g. titanium dioxide and
98	carbon black) (Ceresana 2011b, Lithner et al. 2011). Biocide examples include halogen, metallic
99	and organosulfur compounds (Ceresana 2012). Fire retardants may be added to reduce
100	flammability (e.g. organic halogen compounds and magnesium hydroxide) (Ceresana 2011c).
101	Various lubricants such as paraffin and other petrochemical waxes and oils may also be added to
102	the polymers or surfaces of machine processing parts during plastics manufacturing.
103	3.1.1 Phthalate Plasticizers
103 104	3.1.1 Phthalate Plasticizers One of the largest and most controversial groups of plastic additives is plasticizers.
104	One of the largest and most controversial groups of plastic additives is plasticizers.
104 105	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al.
104 105 106	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al. 2012). Plasticizers are a class of organic compounds added to plastics to improve flexibility and
104 105 106 107	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al. 2012). Plasticizers are a class of organic compounds added to plastics to improve flexibility and durability, without which a plastic may be too rigid and brittle for its intended use (Latini et al.
104 105 106 107 108	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al. 2012). Plasticizers are a class of organic compounds added to plastics to improve flexibility and durability, without which a plastic may be too rigid and brittle for its intended use (Latini et al. 2004, Till et al. 1982). Plasticizers work by decreasing the polymer T _g , making the plastic softer.
104 105 106 107 108 109	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al. 2012). Plasticizers are a class of organic compounds added to plastics to improve flexibility and durability, without which a plastic may be too rigid and brittle for its intended use (Latini et al. 2004, Till et al. 1982). Plasticizers work by decreasing the polymer T _g , making the plastic softer. PVC polymers use almost 90% of plasticizers produced worldwide (Cadogan and Howick 2000).
104 105 106 107 108 109 110	One of the largest and most controversial groups of plastic additives is plasticizers. Phthalate ester plasticizers were first used commercially in the 1920s (Graham 1973, Guo et al. 2012). Plasticizers are a class of organic compounds added to plastics to improve flexibility and durability, without which a plastic may be too rigid and brittle for its intended use (Latini et al. 2004, Till et al. 1982). Plasticizers work by decreasing the polymer T _g , making the plastic softer. PVC polymers use almost 90% of plasticizers produced worldwide (Cadogan and Howick 2000). The most common types of plasticizers are the phthalate esters listed in (Table 2).

114	(DEHP) (Fasano et al. 2012, Sendón et al. 2012). The Food and Drug Administration (FDA)
115	restricts food use-approved plasticizers to 30% of the weight of food containers (US FDA
116	2013a). PVC is predominantly plasticized with DEHP. Due to health concerns and governmental
117	regulatory changes (EU 2011), DEHP use is declining and being replaced with linear phthalates
118	and non-phthalate plasticizers such as polyester (U.S. DHHS 2011). DEHP is classified by the
119	Environmental Protection Agency (EPA) as a class B2 probable human carcinogen, and acts as
120	an endocrine disruptor in the body (Zhou et al. 2011). Human exposure to DEHP is primarily
121	through ingestion, whereas DMP and DEP are through inhalation; DBP and DEP can be
122	absorbed transdermally (Guo et al. 2012).
123	Unlike some plasticizers, phthalates are not chemically bound to plastic products and
124	therefore can leach into foodstuffs (Zhou et al. 2011). Majority of guidelines are set for drinking
125	water, but not all phthalates used in food packaging are addressed. The EPA limits phthalates
126	according to the Phthalates Action Plan due to their toxicity and evidence of pervasive human
127	and environmental exposure pathways. Leaching into water sources can be toxic to terrestrial and
128	aquatic animals (Russo et al. 2012, U.S. EPA 2012). The most common phthalate is DEHP (CAS
129	117-81-7), which is regulated under the EPA's Safe Drinking Water Act (SDWA) at a maximum
130	contamination limit of 0.0056 mg/L (U.S. EPA 2017a). The solubility of DEHP in water is low
131	(45 μ g/liter), though, DEHP may form colloidal dispersions with higher solubility values (> 285
132	µg/liter) (IPCS 1992). Phthalates migrate into ethanol more readily than water (Karačonji et al.
133	2017) because they are miscible with most common organic solvents (IPCS 1992). The
134	migration of phthalates is likely influenced by pH. Soft drinks with a pH of 3 had 5 to 40 times
135	greater migration from plastic to liquid when compared to pH 5 mineral water (Bosnir et al.

136	2007). Given wine ethanol content (7 to 14% v/v) and pH (3 to 4) it may be possible for greater
137	migration to occur in wine when compared to water (Amerine et al. 1980), though no data are
138	available to show whether there is greater migration of phthalates into wine compared to water.
139	While few studies have investigated the migration of plastic materials into wine, there have been
140	studies that evaluate food contact materials (FCM) migration into food simulants (Paseiro-
141	Cerrato et al. 2017, US FDA 1977a), fruit juices (de Quirós et al. 2015), mineral water, and soft
142	drinks (Bosnir et al. 2007). After 30 days of exposure in PET bottles, DMP was not detected in
143	mineral water, DMP was abundant in soft drinks, varying with preservatives (sodium benzoate
144	and potassium sorbate). DMP ranged from $18 - 2666 \ \mu g/L$ in soft drinks. However, they do not
145	account for whether the products were contaminated prior to being in bottle, such as through
146	exposure in the bottling line. If the source of contamination was the bottling line, a similar
147	conclusion might be made for the bottling of wine.
147 148	conclusion might be made for the bottling of wine. Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across
148	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across
148 149	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's
148 149 150	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's should account for gender, age, duration of exposure and body mass. TDI set by the EPA for
148 149 150 151	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's should account for gender, age, duration of exposure and body mass. TDI set by the EPA for nine phthalates ranges from 0.02 to 0.8 mg/kg-day orally. The European Food Safety Authority's
148 149 150 151 152	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's should account for gender, age, duration of exposure and body mass. TDI set by the EPA for nine phthalates ranges from 0.02 to 0.8 mg/kg-day orally. The European Food Safety Authority's (EFSA) tolerable daily intake (TDI) for phthalates is 0.01 mg/kg-day for DBP, 0.05 mg/kg-day
 148 149 150 151 152 153 	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's should account for gender, age, duration of exposure and body mass. TDI set by the EPA for nine phthalates ranges from 0.02 to 0.8 mg/kg-day orally. The European Food Safety Authority's (EFSA) tolerable daily intake (TDI) for phthalates is 0.01 mg/kg-day for DBP, 0.05 mg/kg-day for BBP, 0.05 mg/kg-day for DEHP (Moreira et al. 2013). The US Consumer Product Safety
 148 149 150 151 152 153 154 	Regulatory intake, defined as Tolerable Daily Intake (TDI) is not clearly defined across states, countries, or globally and differs for each type of plasticizer. Ideally, suggested TDI's should account for gender, age, duration of exposure and body mass. TDI set by the EPA for nine phthalates ranges from 0.02 to 0.8 mg/kg-day orally. The European Food Safety Authority's (EFSA) tolerable daily intake (TDI) for phthalates is 0.01 mg/kg-day for DBP, 0.05 mg/kg-day for BBP, 0.05 mg/kg-day for DEHP (Moreira et al. 2013). The US Consumer Product Safety Commission examined target subpopulations (women, infants, toddlers, and children), and for

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

158 exposure ranged from 0.00015 to 0.0308 mg/kg-day. The EPA's reference doses for phthalates 159 include 0.8 mg/kg-day for DEP, 0.1 mg/kg-day for DBP, 0.02 mg/kg-day for DEHP, and 0.2 160 mg/kg-day for BBP (U.S. EPA 2017b, 2017c, 2017d, 2017e). TDI limitations may not consider 161 the isomeric mixtures of phthalates, with some studies only focusing on a few of the hundred 162 potential isomers with varying physiological impact. Additionally confounding is the fact that 163 few epidemiological studies have been conducted on humans. Though correlations between 164 toxicity data on animal subjects can be made with human health, more work is needed to 165 understand the physiological impacts on human health. The FDA's guidance for packaging, or 166 Food Contact Substances (FCS) indicates a consumption factor (CF), for the fraction of content 167 within a daily diet of a particular additive. The CF of plasticized LLDPE is 0.05 mg/kg under the 168 assumption that migration is occurring in alcoholic beverages with alcohol concentrations ranging from 10 to 15% (v/v) ethanol/water, with no specific regulation applied to wine 169 170 containers (US FDA 2007a). Despite the lack of global regulatory limits and study limitations, 171 compelling evidence suggests the link between phthalates and negative effects on reproductive, 172 fetal developmental, liver, kidney, heart, lung and hematologic health in humans (DiGangi et al. 2002) illustrating the need for HACCP systems when phthalate-containing plastics are used in 173 174 food storage products.

175

3.1.2 Bisphenols

Bisphenols are primary constitutional monomers used in production of epoxy resins and polycarbonates used in food contact materials (FCM) applications (Table 2). Epoxies are used to line canned food containers, processing pipes, and concrete wine tanks, among many other uses (Pivnenko et al. 2015). Epoxy resins are produced through the reaction of epichlorohydrin and

180	BPA to form bisphenol A diglycidyl ether (DGEBA or BADGE). Epoxy resins may be further
181	reacted (cured) through catalytic homopolymerization or by forming a copolymer with hardeners
182	or curatives to form thermosetting cross-linked polymers that exhibit strong mechanical
183	properties with high temperature and chemical resistance. Hardeners include phenols,
184	anhydrides, polyfunctional amines, and thiols in order of increasing reactivity.
185	Polycarbonate polymers are commonly used in water bottles and food storage containers
186	because they are durable with high impact-resistance, temperature resistance, and optical clarity.
187	Since the 1950s, BPA has been used as the monomer in polycarbonate plastic, resulting in global
188	production estimated at 10 billion pounds per year (vom Saal et al. 2012). BPA was approved by
189	the Food and Drug Administration (FDA) for products containing food in the 1960s (Grignard et
190	al. 2012). Polycarbonate is typically produced by the reaction of bisphenol A (BPA) and
191	phosgene COCl ₂ but may be produced with other bisphenols e.g. bisphenol S (BPS) or bisphenol
192	F (BPF) (Table 2). BPA may be used as an antioxidant for polymer and plasticizer use in PVC
193	production (Grossman 2008). Leaching of BPA occurs when the molecules are hydrolyzed from
194	polycarbonate as temperature increases at high or low pH (Fasano et al. 2012), although BPA is
195	poorly soluble in water (Le et al. 2008). When BPA-containing plastics or epoxy-lined storage
196	containers are scratched or damaged over time, BPA has the capacity to leach into food and
197	beverages (Brede et al. 2003, Brotons et al. 1995, Howdeshell et al. 2003). Wine storage bags are
198	often made of polycarbonate plastic (also called #7) which contain BPA.
199	BPA has received considerable attention as a suspected toxicant due to its weak
200	estrogenic activity, which is suggested to disrupt endocrine and estrogen signaling, alter human
201	development, and cause breast and prostate cancers, have led to usage restriction (Barrett 2008,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

202	Grignard et al. 2012, Matsushima et al. 2007, Timms et al. 2005). Nevertheless, migration of
203	BPA into foods from packaging materials occurs at very low concentrations (Ackerman et al.
204	2010, Noonan et al. 2011). Few data are available on bisphenol migration in wine, though BPA
205	and its curing agent methylenedianiline migrated through epoxy resin vats into model wine in a
206	range of 0 to 30 mg/kg and 0 to 7.6 mg/kg resin, respectively (Larroque et al. 1988). New
207	research would be needed to determine if contemporary tanks exhibit similar migration. BPA
208	from plastic food containers is not expected to be a risk to consumers (Bang et al. 2012). US
209	FDA and EFSA both agree that BPA poses no health risk to any age group under normal dietary
210	exposures consumed, with women of childbearing age and men of comparable ages experiencing
211	an exposure of up to 0.388 μ g/kg-day, below the recommended TDI of 4 μ g/kg-day. (EFSA
212	2015, US FDA 2014). No U.S. regulatory agency restricts levels of BPA in food, however
213	twelve states in the US have policies to limit BPA exposure (Safer States 2017). For example, in
214	2015 California listed BPA on its Proposition 65 list, also known as the Safe Drinking Water and
215	Toxic Enforcement Act of 1986, which prohibits companies and individuals from using
216	chemicals known to the state to cause cancer or reproductive toxicity (Misko 2016, OEHHA
217	2015). As a result, many manufacturers are developing new formulations of non-BPA containing
218	epoxies and other alternatives.
219	While many manufacturers have discontinued using BPA and claim to be "BPA-free," or
220	increasingly use BPA non-intent (BPA-NI) alternatives (BPA-NI means that no BPA was
221	intentionally added), cross-contamination of trace amounts of BPA may be possible during the

222 manufacturing process and contact with material still containing BPA that may be used on shared

223 equipment. Additionally, they may instead be using BPS or BPF that also test positive for

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

224	estrogenic activity (Gander 2016, Molina-Molina et al. 2013). Grignard et al. (2012) used two
225	highly standardized transactivation assays, and found the estrogenic activity of BPA and BPS
226	concentrations to be comparable.
227	BPA has been found in wine stoppers and wines stored in steel, wood and plastic vats,
228	glass bottles and Tetra Briks (mean concentration 0.58 ng/mL) (Brenn-Struckhofova and Cichna-
229	Markl 2006), in an unspecified brand of synthetic corks (Zapel 2011), and a small sample of beer
230	and soda cans reportedly contained 1.7 to 3.5 μ g of BPA per can attributed to the epoxy lining
231	(Müller 2017). Ester bonds linking BPA to polycarbonate and epoxy resins of food storage
232	material are hydrolyzed when exposed to heat and contact with acidic or basic foods, which
233	releases bisphenols into foods (Fasano et al. 2012).
234	NIAS may also be an issue, especially where new, alternative polymers use is concerned
235	and which despite FDA Guidance documents, may not be fully understood (Paseiro-Cerrato et al.
236	2017, US FDA 2007b). The FDA regulates food-contact "resinous and polymeric coatings,"
237	listing approved precursor materials and setting migration limits of total extractives from the
238	coating to the food (US FDA 1977b).
239	4 Hazard Analysis Critical Control Points (HACCP)

As plastics use increases in wineries, little is known about the implications of plastic containing products on identified critical control points (CCP) and safety programs. To monitor the safety of food products, including their packaging, HACCP have been utilized by food producers, regulatory authorities, and inspection services (Bovee et al. 1997) and with increasing occurrence, winemaking. For example, the European Union set maximum concentration limits

245	for ochratoxin A (OTA), a fungus-derived toxin in wines for all member states and HACCP have
246	been proposed as a method to address that risk (Martínez-Rodríguez and Carrascosa 2009),
247	which may also be applicable to plastic additive contamination. Though HACCP in wineries
248	have not been required under the US Food Safety Modernization Act (FSMA) (Leake 2014), the
249	FSMA requires FDA inspection of wineries since 2018. FSMA will be used to monitor the whole
250	food production chain, so in addition to wineries, custom-crush operations, and mobile bottling
251	operations will be under consideration (Smith 2013). Several control points (CP) and CCP lists
252	and guides are already published in journal articles and through universities and are available for
253	use in wineries. While CP are important, CCPs are crucial for product quality and manufacturing
254	safety. CP and CCP can be used to develop Wine Standards Management Plans (WSMP) in a
255	winery (N.Z. FSA 2017). CP and CCP occur in the vineyard, in transport of fruit from vineyard
256	to winery, and in the winery. CP and CCP for grapes, must, and wine are related to physical,
257	chemical, and microbial hazards and quality parameters such a product appearance, consumer
258	acceptability, flavor, color, and aroma. Good manufacturing practices and vineyard management
259	are key in maintaining CPs and CCPs (Christaki and Tzia 2002). In the United States, wineries
260	must have a permit with the Alcohol and Tobacco Tax and Trade Bureau (TTB) and be
261	registered with the FDA under the Bioterrorism Act of 2002. Wine is considered low in risk of
262	food safety hazards according to the TTB and FDA. However, the FSMA imposes a few
263	additional safety factors, such as enforcing continued registration with government agencies,
264	recalls, product detainment, and import regulation (Smith 2013). One important consideration
265	that is overlooked in CPs and CCPs is plastic usage. Plastic is either not mentioned or is not
266	considered a biological, chemical, or physical hazard (N.Z. FSA 2017). However, based on

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

267	research from other foods and beverages and the lack of published data on wines, there may be a
268	need to re-evaluate and research potential hazards of plastics in winemaking.
269	Regardless of the scientific or regulatory consensus about health risks, they may be
270	irrelevant to market forces from negative public perception and the assumption that plastics are a
271	hazard in a wine industry that increasingly uses plastics. For example, part of a "Chemical
272	Fallout" article series by the Milwaukee Journal Sentinel outlined negative effects of BPA, to
273	much praise (Rust et al. 2007). Brewer and Ley (2011) examined public response to this
274	controversy across news media and determined that despite mixed opinions by the scientific
275	community as to the confirmed link between risks and consumption, most people who had been
276	exposed to even a small amount of information about BPA, were concerned and favored a ban on
277	its usage. As outlined in Brewer and Ley, three main actors are involved in perception of BPA,
278	which could also be expanded to other compounds like phthalates: science, business, and
279	government. Irrespective of health effects, or lack thereof, even for benign compounds, negative
280	marketing or public perception may have grievous consequences. While implementation of
281	HACCP practices might be helpful in mitigating health risks and satisfying regulatory
282	requirements, we suggest that HACCP approaches might also be beneficial if applied to other
283	areas such as hazard analysis of critical control points to wine production processes that may
284	influence potential public perception and marketing in addition to effects on wine flavor and
285	quality.

286

4.1 Plastics and Plastic Additives in Wine

287 Plasticizers tend to be lipophilic, with limited solubility in aqueous alcohol solutions.
288 However, many foodstuffs used to make alcohol (i.e. grapes, apples, grains, etc.) have some

289	lipophilic substances in their skins that may accumulate plasticizers through contact (Buglass
290	2010). From the time they are picked, fruit used to make wine may contact plastics that
291	potentially contain plastic additives. For example, fresh picked plums transported in plastic bags
292	had detectable levels of DEP, DBP, and DIBP (Jurica et al. 2016). After entry into the winery,
293	fruit and wine ingredients may be exposed to pumps, tubing, transport containers, pneumatic
294	press material, additives such as flavorings, and finally storage, bulk shipping containers and
295	consumer packaging materials which can all contain or be contaminated with plasticizers or
296	bisphenols and possibly contribute cumulative increases of these chemicals to the wine (Buglass
297	2010, Del Carlo et al. 2008, Sendón et al. 2012). Even though the fruit, must, and wine residence
298	time with any one of these plastics containing materials may be short, the cumulative exposure
299	potential for leaching is unknown and a worthy area for additional research.
300	Regarding alcoholic beverages, plasticizers have been found in Chinese baijiu, a white
300 301	Regarding alcoholic beverages, plasticizers have been found in Chinese <i>baijiu</i> , a white spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor
301	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor
301 302	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the
301302303	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the Ministry of Health in June 2011 (China.org 2012, Zhu 2012). Large-scale tests of China's liquor
301302303304	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the Ministry of Health in June 2011 (China.org 2012, Zhu 2012). Large-scale tests of China's liquor have shown almost all alcohol products contain an average level of 0.537 mg/kg of plasticizers
 301 302 303 304 305 	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the Ministry of Health in June 2011 (China.org 2012, Zhu 2012). Large-scale tests of China's liquor have shown almost all alcohol products contain an average level of 0.537 mg/kg of plasticizers (Yinan 2012). DBP and DIBP were found in more than 94% of food samples, but were
 301 302 303 304 305 306 	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the Ministry of Health in June 2011 (China.org 2012, Zhu 2012). Large-scale tests of China's liquor have shown almost all alcohol products contain an average level of 0.537 mg/kg of plasticizers (Yinan 2012). DBP and DIBP were found in more than 94% of food samples, but were significantly higher in wine and beer compared to other beverages (Guo et al. 2012). Other grain-
 301 302 303 304 305 306 307 	spirit usually distilled from sorghum or other grains. The Jiungui liquor company found liquor samples containing 1.04 mg/kg DBP, which is higher than the 0.3 mg/kg standard set by the Ministry of Health in June 2011 (China.org 2012, Zhu 2012). Large-scale tests of China's liquor have shown almost all alcohol products contain an average level of 0.537 mg/kg of plasticizers (Yinan 2012). DBP and DIBP were found in more than 94% of food samples, but were significantly higher in wine and beer compared to other beverages (Guo et al. 2012). Other grain- neutral spirits and vodka have been found to contain phthalate plasticizers including DBP, DOP,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

311	In terms of winemaking, plastics are used in the manufacture, transport, and storage of
312	wine (Table 3). Just as in liquor manufacturing, various stages in winemaking may involve
313	plastic products that contain leachable plasticizers and other additives. Wine may come into
314	contact with extractible plasticizers such as DBP and DEHP, which are the most common
315	phthalate contaminants in wine (Buglass 2010). In some cases, plastics are used because they
316	offer advantages to traditional packaging. For example, PET bottles and Bag-in-Box containers
317	weigh less than a glass wine bottle of the same volume, so shipping costs are lower, storage is
318	easier, and they do not shatter (Scheer and Moss 2012). Several of these features are considered
319	to be environmentally-friendly. Packaging used for boxed wine has some advantages because it
320	supposedly prevents oxidation for longer once opened when compared to glass bottles and can
321	keep wine fresh for up to six weeks after opening (Ghidossi et al. 2012). A drawback of using
322	plastic is the potential for plastic materials in contact with wine to scalp volatile flavors from
323	wine, or wine may absorb undesirable aromas from plastic (Peyches-Bach et al. 2012). Examples
324	of plastic materials that may contact wine are stoppers, including those used to seal partially
325	consumed bottles of wine, as well as aluminum cans and concrete fermenters, which were
326	commonly lined with BPA based epoxy, although BPA-NI alternatives are available (Gander
327	2016, Scheer and Moss 2012, Sheftel 2000, Teichgraeber 2005). Wine in can consumer
328	acceptance and sales share are increasing and is an area of great interest and concern for
329	manufacturers (Johnston and Velikova 2016, O'Donnell 2016).
330	Alternatives to natural bark cork closures are also a concern for plasticizer contamination.
331	Alternative closure use such as synthetic corks and screw caps has increased due to the rate of

332 cork taint, estimated at 3-5% of bottled wine, caused by 2,4,6-trichloroanisole (TCA) that

15

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

333	imparts musty, wet cardboard aromas (Butzke and Suprenant 1998, Jennings 2012). Synthetic
334	closures comprise an estimated 19% of the closure market, with metal screw caps making up
335	11% of the market of approximately 20 billion wine bottles per year (Steeman 2010). A greater
336	range of plasticizers occur in plastic closures compared to other plasticized plastic materials used
337	in winemaking (Buglass 2010, Sendón et al. 2012). SARANEX™, used in both screw cap liners
338	and synthetic closures, is a barrier film consisting of layers of SARAN [™] resin (polyvinylidene
339	chloride, PVDC) and thermoplastic polymer resins (Dow 2013). SARAN TM resin contains PVC,
340	a source of plasticizer contamination. Plasticizers found in PVC-based films include DEHA and
341	phthalates such as DBP and DEHP (Groth and Silbergeld 1998). LDPE has been used as a
342	replacement for PVC in SARAN TM (SC Johnson), however it provides a poor oxygen barrier and
343	can scalp flavors from foods (Smith and Hui 2004). In addition, use of artificial closures, plastic
344	liners in screw caps, and other plastic closures may expose wine to plastic leachates that alter
345	organoleptic properties in the wine as with other foods and beverages (Wagner and Oehlmann
346	2009).

347 In the environment, apart from a few fungal species and bacterial isolates, it is difficult 348 for plastics to be broken down by microbes due to their absence of enzymes necessary to convert 349 biochemically novel compounds such as plastic molecules into intermediates (Yoshida et al. 350 2016). Nevertheless, certain microbes are integral in the process of wine making and though 351 microbes that can break down plastics have not been identified in wine, more work is needed to 352 determine if microorganisms in wine promote the breakdown of plastics involved in wine 353 processing, storage, and packaging and that may have human health or wine quality 354 consequences. Also important is the identification of wine microorganisms potentially capable of

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

355 degrading bio-based plastics. Microbes can degrade organic and inorganic compounds such as 356 lignin, starch, cellulose, and hemicellulose, therefore storage in bio-based containers should be 357 examined. 358 4.2 **Exposure Considerations** 359 Concentrations consumed by humans are an effect of many variables: storage conditions 360 of the beverage influences amount of leaching, chemical properties of the beverage, packaging 361 type, intake, gender, size of the person, and age all interplay. Moderate drinkers of alcoholic 362 beverages are described as individuals who consume four drinks for men and three drinks for 363 women in a single day, and a maximum of 14 drinks for men and seven drinks for women per 364 week (Nordqvist 2018). In comparison to the estimated BPA consumed based on the National 365 Health and Nutrition Examination Surveys, total adult intake ranged from 30 - 70 ng/kg-day 366 between 2005 and 2010 and was mainly attributed to canned food consumption (Lorber et al. 367 2015). Estimated exposure of seven phthalate monoesters as measured by urinary metabolites ranged from 1.7 to 110 mg/kg-day for the 95th percentile of the population. Phthalates were 368 369 based on total exposure, including consumption, absorption through skin, and inhalation (David 370 2000). For an adult man with an average weight of 89.6 kg (Gill 2018), given a standard glass of 371 wine is approximately 148 mL (NIAAA) and he drinks the average 4 glasses a day with a 372 potential BPA concentration of 0.58 ng/L, his exposure to BPA from this consumption factors to 373 343.36 ng, or 3.8 ng/kg-day, a tenth of the lowest total adult daily intake. Though many factors 374 affect how much plastic additives are in a wine (e.g. storage conditions, manufacturing process), 375 the average amount of BPA in wine from the papers reported in this review was 0.58 ng/mL 376 (Brenn-Struckhofova and Cichna-Markl 2006, Lambert and Larroque 1997). Different phthalates

377	are examined and reported in each study, but in general Carrillo et al. (2008) found total
378	phthalates in wines ranged from 0.0027 to 0.015 mg/L. For the same man consuming the greatest
379	of the range cited by Carrillo et al. (2008) in four drinks, he would consume 0.0089 mg, much
380	lower than the 95 th percentile of consumption according to David (2000). Just as alcohol affects
381	each age, gender, and size of person differently, each person's ultimate exposure to additives
382	may differ based on the same variables. Finally, it begs the question: how much of these plastic
383	additives does a person have to consume before they experience health problems, if at all?
384	5 Analytical Methods
385	Due to the widespread use of bisphenols and phthalates, disposable laboratory
386	plasticware such as pipette tips may be contaminated with or contain these additives, which can
387	compromise laboratory experiments (Del Carlo et al. 2008). Additives such as oleamide and
388	biocides have been found to leach from laboratory PP disposable plasticware, which affects
389	protein function in biological research (McDonald et al. 2008). Laboratories can seek
390	manufacturers that disclose information on additives used in the manufacture of plastic products
391	for laboratory use, as well as leachable reaction components used in the manufacture of plastics.
392	Regardless, researchers may still need to confirm the absence of effects due to additive
393	contamination or to account for them in their assay methods and results.
394	Because bisphenols and phthalates are mostly found at trace levels (nanograms per
395	milliliter or less), all analytical quantification methods in both solid and in liquid samples must
396	start with concentration of the analytes prior to chromatographic analysis. Examples of
397	concentration methods include liquid-liquid extraction (LLE) (Del Carlo et al. 2008), solid-

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

398	phase extraction (SPE) (Del Carlo et al. 2008, Russo et al. 2012), multi-walled carbon nanotuble
399	sorbents (Li et al. 2013), solid-phase micro-extraction (SPME) (Carrillo et al. 2008, 2007) and
400	stir-bar sorptive extraction (SBSE) (Pfannkoch and Whitecavage 2002).
401	5.1 Determination of Phthalates
402	Several analytical methods have been utilized to determine phthalate concentration in various
403	materials used in making and storing wine, however, detection of phthalates is challenging
404	because of their ubiquitous nature in the laboratory environment (Del Carlo et al. 2008).
405	Eliminating background traces of phthalates is important in order to report accurate limits of
406	detection (Bradley et al. 2013). Phthalate analysis is based mainly on gas chromatography -
407	flame ionization detection (GC-FID) and gas chromatography – mass spectrometry (GC-MS),
408	however gas chromatography/ion trap - mass spectrometry (GC/IT-MS), high performance
409	liquid chromatography – ultra violet visible detection (HPLC-UV) and liquid chromatography –
410	mass spectrometry (LC-MS) are also utilized (Cao 2010, Russo et al. 2012). Using these
411	analytical methods, DBP, BBP, and DOP have been found in wines, including DEHP at levels
412	exceeding the EPA limit (0.0056 mg/L in water), particularly from wines with synthetic or
413	agglomerated cork stoppers (Carrillo et al. 2008, Sendón et al. 2012).
414	5.1.1 GC-FID
415	GC-FID has primarily been used to examine other foods, but not alcoholic beverages.
416	However, GC/FID was used to establish the effectiveness of single-drop microextraction (Batlle
417	and Nerín 2004). Three aqueous food simulants containing trace phthalates were analyzed,
418	including 15% (v/v) ethanol/water, 3% (w/v) acetic acid/water, and distilled water. In

19

419	comparison to SPME, recovery was effective, ranging from 85 to 115% for most compounds. It
420	was determined limits of detection levels were below those recommended by the EPA.
421	5.1.2 GC-MS
422	Solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) was used
423	to investigate the presence of six phthalate esters from commercial, private producers, and pilot
424	red and white wines at low trace levels (Del Carlo et al. 2008). It was determined that all wine
425	samples were contaminated with phthalates. The limit of detection (LOD) for the analysis was 18
426	ug/L, and the limit of quantitation (LOQ) was 29 ug/L. In comparison to current TDI amounts,
427	which are specified based on mg/kg-d, the amount consumed, as well as factors such as gender
428	an age play a role as to whether an individual is exposed to safe amounts.
429	Plastic wine tops held at "extreme conditions" (EC) of incubation in an oven at 40 °C for
430	10 days or in ultrasonic bath for 15 min and exposed to 15% (v/v) ethanol/water (Fasano et al.
431	2012). Eight compounds were examined with SPE-GC-MS, four of which were phthalates, and it
432	was determined that all plastic wine tops receiving EC treatment were contaminated by all
433	phthalates, and in the ultrasonic treatment were contaminated with 2 to 3 phthalates.
434	Carrillo et al. (2007) determined that the best fibers for examining phthalate esters in
435	wine were polyacrylate (PA), carbowax-divinylbenzene (CW-DVB), and polydimethylsiloxane-
436	divinylbenzene (PDMS-DVB). Further work utilized isotopically-labelled phthalate internal
437	standards with HS-SPME-GC/MS and determined total phthalates in the wines analyzed ranged
438	between 0.0027 to 0.015 mg/L (Carrillo et al. 2008).

439	5.1.3 Electron Spin Resonance
440	Migration of DOXYL and TEMPO-phthalate from agglomerated champagne cork
441	stoppers was examined using electron spin resonance (ESR) (Six and Feigenbaum 2003, Six et
442	al. 2002). Paramagnetic probes were incorporated in the adhesive and cork during processing. To
443	incorporate the probes, cork granules were sealed with probes in a hermetic poll box in an oven
444	held at 70 °C for 2 hr for TEMPO-phthalate. Ten grams of cork granules were molded with 1.75
445	g adhesive plus 0.3 g Vaseline. Corks were immersed in alcoholic simulant of wine (12% v/v
446	ethanol/water at pH 3) for 10 days at 40 °C. ESR spectra of slices of cork indicated simulant
447	wine penetrated the whole structure of the finished cork.
448	5.1.4 GC/IT-MS
449	Pre-concentration is necessary for developing sensitive analytical methods of trace
450	compounds such as phthalates. Russo et al. (2012) explored the pre-concentration step to
451	optimize SPE-GC/IT-MS by using Carbograph 1 sorbent to improve recovery of phthalate by 78
452	to 105%. The method was both sensitive and reproducible in the red and white wines analyzed.
453	Six and Feigenbaum (2003) analyzed champagne corks for potential migrants of concern,
454	toluene diisocyanate (TDI) and methylene bisphenylisocyanate (MDI) in adhesives, lubricants,
455	and surface treatments. Analysis was conducted spectroscopically and chromatographically. The
456	composition was determined and verified by infrared spectroscopy, proton nuclear magnetic
457	resonance spectroscopy (1H-NMR) and GC-MS. Interestingly, they found the presence of other
458	solutes in wine, such as sugars, can decrease the migration of additives from cork. Simulant wine
459	can overestimate this migration, providing an extra margin of safety when compared to levels
460	found in actual wine. DEHP was the only migrant detected from the corks, with 90% of

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

461	extraction occurring within 1 day in all tests. DEHP was specifically monitored in further tests,
462	and found transfer from cork to simulant wine to be 50 μ g/L. Existing regulations on silicone
463	elastomers in France was used as the reference value for safe levels of migration from
464	champagne corks, therefore migrated DEHP was less than the legal reference of 3 mg/L.
465	5.1.5 Liquid Chromatography
466	Agglomerated corks are made from natural cork granules and adhesives which contain
467	esters such as phthalates and adipates. Sendón et al. (2012) utilized HPLC-MS/MS to examine
468	the presence of phthalates in 21 agglomerated cork stoppers as well as their potential migration
469	into 12% (v/v) ethanol/water, although, no corks yielded quantifiable levels of phthalate
470	migration. Yano et al. (2002) also used HPLC to determine the presence of phthalates in Korean
471	and Japanese retail beverages, including alcoholic beverages such as the Japanese distilled
472	beverage sho-chu, beer, rice punch, red wine, and white wine. Levels of DBP in Japanese red
473	wines were among the highest sampled at 0.275 μ g/g, nearly 100% greater than in Korean wine.
474	LC-GC/MS has been found to be an efficient method to examine phthalate residues in grain
475	neutral spirits and vodka (Leibowitz et al. 1995). Six reported phthalates were quantitated in 50
476	samples, although detected levels were insignificant compared to the suggested threshold for
477	long-term exposure, 15 mg/L, with concentrations as low as 20 μ g/L. Most recently (Barciela-
478	Alonso et al. 2017), developed a SPE-LC-MS method to determine 4 phthalates in water stored
479	in plastic bottles and white and rosé wine stored in Tetra Brik packages. All phthalates were
480	found in water, though DEP and DBP were the only phthalates recovered in both type of wine.
481	5.2 Determination of Bisphenols

482

Many solvent extraction methods as well as SPE are used to isolate BPA from samples,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

483 followed by analysis such as LC, GC, and immunochemical methods (Ballesteros-Gómez et al.

- 484 2009).
- 485

5.2.1 SPE with GC/MS

486 Fasano et al. (2012) conducted migration tests to examine levels in 11 types of common 487 food packaging materials, including plastic wine tops made with elastomers and foams (ethylene, 488 propylene, urethane, silicones or their copolymers with different additives). The migration test 489 utilized liquid food contact materials to simulate different types of foods: distilled water for 490 aqueous foods with pH above 4.5, 3% acetic acid in distilled water for acidic aqueous foods with 491 pH below 4.5, 15% ethanol for alcoholic foods, and oil for fatty foods. Migration test conditions 492 were 40 °C for 10 days, which was considered "extreme conditions" (Fasano et al. 2012). 493 Analytes were concentrated with SPE and quantified with GC/MS. Plastic wine bottle tops showed the highest level of migration for one of the two alkylphenols and three of the four 494 495 phthalates when compared to the ten other sources of food packaging materials which included 496 items such as baby product food packaging, canned food, food bags, and glass jar caps. Of the 497 three phthalates found, levels were 25 to 75 times greater than the lowest amount found in the 498 other packaging materials. BPA was not recovered in wine bottle tops. The authors concluded 499 risk due to exposure is primarily associated with potentially negative impact on health. In cases 500 where wine is stored on its side, there may be potential migration issues from wine bottle tops.

501

5.2.2 HPLC

Lambert and Larroque (1997) utilized HPLC with fluorescence detection in wine and
 mineral water, which can be contaminated through exposure to epoxy resins lining wine storage
 containers, water towers, and drinking water pipes. Detection limits ranged from 5 to 2.5 μg/L in

505	red and white wine and 0.25 to 0.70 μ g/L in mineral water. Sol-gel immunoaffinity, HPLC, and
506	fluorescence detection were used to examine BPA contamination in wine exposed to vats (steel,
507	wood and plastic), glass bottles and Tetra Brik type carton packages (Brenn-Struckhofova and
508	Cichna-Markl 2006). Plastic wine stoppers were immersed in 11% ethanol and detectable levels
509	of BPA were leached from the stoppers. Wine samples consisted of a total of 59 wines (46 white,
510	13 red). In 13 of 59 wine samples, the BPA concentration was below the LOQ (0.2 ng/mL).
511	Mean BPA for the wine samples was 0.58 ng/mL, below previously published BPA levels
512	derived from migration experiments using wine simulants.
513	6 Alternative Plastics and Plasticizers: Bio-based Options
514	Alternative plastics and plasticizers from natural compounds that have no negative effect
515	on human health and little to no impact on economic viability and product quality would likely
516	be of interest to some producers in the wine industry, particularly those that desire to market
517	more natural or organic winemaking approaches. Polysaccharides, proteins, lipids, and microbes
518	are potential sources for natural plasticizers and bio-based polymers. Bio-based compounds
519	(Table 4) may decrease the need for petroleum-based plastics and plasticizers as well as reduce
520	their toxicological and environmental impacts. Alternative plasticizers are an option to reduce
521	toxicity due to plasticizer leachate in plastic products (Lowell Center for Sustainable Production
522	2011). Biopolymer films and natural-based plasticizers are less toxic, leachable, and are
523	biodegradable compared to phthalate plasticizers. However, biopolymers tend to have reduced
524	mechanical properties and performance. Biopolymers currently only share 5 to 10% of the
525	market and cost more than their non-biopolymer counterparts (Lowell Center for Sustainable

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

526	Production 2011, Vieira et al. 2011). With BPA-free and phthalate-free labels on many products,
527	the public is aware these substances are problematic, bio-based alternatives may improve
528	consumer confidence and perception.
529	Though many petroleum-based plastics contain leachable additives that potentially cause
530	health problems, many food contact approved plastic resins such as specific formulations of PE
531	currently offer useful functional properties and do not contain phthalates, bisphenols or other
532	potentially harmful substances (Dow 2014). Linear low-density polyethylene (LLDPE), high-
533	density polyethylene (HDPE), medium-density polyethylene (MDPE), ultra-high-molecular-
534	weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) that is made with
535	HDPE, are generally considered to be plasticizer free. PE products available to the wine industry
536	include wine bottle closures and wine tanks. Phthalate alternatives to DEHP and DINP-
537	containing plastic corks and cap liners may include low volatility plasticizers such as Palatinol
538	10-P (Goth 2007), to those that are oil and plasticizer free (Elastocon 2015). Barrier films have
539	also been applied to natural cork stoppers as a way to prevent TCA induced cork taint (Easton
540	2010). It is conceivable that barrier films may be developed that could prevent plasticizer
541	leaching. It is worth mentioning that even polyethylene products can contain bioactive
542	ingredients added for various purposes (e.g. UV stabilization), but not necessarily in all cases or
543	products.
544	7 Conclusion

545 Though HACCP are not required for wineries in the United States, additional benefits of 546 developing a program include addressing health, wine quality, and public perception concerns in 547 using plastics during winemaking. Though manufacturers may state that a finished product may

548	not contain certain additives such as bisphenols or phthalates, other additives may be present.
549	Furthermore, consumers and wine producers alike may not be aware that some plastics, such as
550	PE, could contain additives synthesized from animal extracts such as fatty acids produced by the
551	hydrolysis of animal fats (tallow) (Dow 2014). Therefore, labelling of these plastics may be
552	warranted to satisfy situations in which individuals desire to comply with various religious
553	dietary laws (e.g. kosher) or for personal reasons (e.g. vegan).
554	Concerned consumers and wine producers who use plastic might want to contact
555	manufacturers for details about the plastic resins and additives used, notwithstanding
556	nondisclosure of proprietary information. Manufacturer resin codes and supporting Regulatory
557	Data Sheet, or independent lab tests, may be needed for definitive details. However, results from
558	independent lab tests can be compromised due to ubiquitous use of plastic products in the
559	laboratory (McDonald et al. 2008).
560	Naturally, consumers and wine producers concerned about leachate contamination can
561	seek products that use traditional materials, such as wood, clay, stainless steel, glass and cork to
562	avoid potential sources of petroleum or animal-based chemicals. Additional action plans for
563	winemakers specifically include developing CPs and CCPs for their winery which would include
564	identifying key points in which fruit, must, wine and its ingredients are in contact with plastic-
565	containing substances. For quality concerns, if plastic-containing items are used, conditions that
566	encourage potential leaching and scalping should be avoided. If plastic is used in the final
567	product, labelling to note any specific precautions taken (e.g. bisphenol-free) could be used to
568	improve public perception. HACCP approaches that identify and prevent potential hazards from

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

569 occurring in winemaking and its marketing, may lead to safer products and better consumer 570 confidence, marketability, and ultimately wine sales. 571 **Literature Cited** 572 3M. 2011. Wine Filtration Systems. 573 Ackerman LK, Noonan GO, Heiserman WM, Roach JA, Limm W, Begley TH. 2010. 574 Determination of Bisphenol A in U.S. Infant Formulas: Updated Methods and 575 Concentrations. J Agric Food Chem 58:2307–2313. 576 Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K. 2012. Sustainability of bio-based 577 plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56. 578 579 Amerine MA, Joslyn MA. 1970. Table Wines: The Technology of Their Production. University 580 of California Press. 581 Amerine MA, Berg HW, Kunkee RE, Ough CS, Singleton VL, Wes A. 1980. The technology of 582 wine making. AVI, Westport, CT. 583 ASTM International. 2013. ASTM D7611 / D7611M-13e1, Standard Practice for Coding Plastic 584 Manufactured Articles for Resin Identification. 585 Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. 2009. Analytical methods for the 586 determination of bisphenol A in food. J Chromatogr A 1216:449-469. 587 Bang DY, Kyung M, Kim MJ, Jung BY, Cho MC, Choi SM, Kim YW, Lim SK, Lim DS, Won 588 AJ, et al. 2012. Human Risk Assessment of Endocrine-Disrupting Chemicals Derived 589 from Plastic Food Containers. Compr Rev Food Sci Food Saf 11:453-470. Barciela-Alonso MC, Otero-Lavandeira N, Bermejo-Barrera P. 2017. Solid phase extraction 590 591 using molecular imprinted polymers for phthalate determination in water and wine 592 samples by HPLC-ESI-MS. Microchem J 132:233–237. 593 Barrett K. 2008. Safety of Water Bottles, Baby Bottles Questioned. ABC News. as found on the 594 website (http://abcnews.go.com/Health/Consumer/story?id=4657968&page=1).

595 596	Batlle R, Nerín C. 2004. Application of single-drop microextraction to the determination of dialkyl phthalate esters in food simulants. J Chromatogr A 1045:29–35.
597 598	Bosnir J, Puntarić D, Galic A, Skes I, Dijanic T, Klaric M, Grgic M, Ćurković M, Smit Z. 2007. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water.
599 600	Bovee EHG, de Kruijf N, Jetten J, Barendsz AW. 1997. HACCP approach to ensure the safety and quality of food packaging. Food Addit Contam 14:721–735.
601 602	Bradley EL, Burden RA, Leon I, Mortimer DN, Speck DR, Castle L. 2013. Determination of phthalate diesters in foods. Food Addit Contam Part A 30:722–734.
603 604 605	Brede C, Fjeldal P, Skjevrak I, Herikstad H. 2003. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam 20:684–689.
606 607 608	Brenn-Struckhofova Z, Cichna-Markl M. 2006. Determination of bisphenol A in wine by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection. Food Addit Contam 23:1227–1235.
609 610	Brewer PR, Ley BL. 2011. Multiple Exposures: Scientific Controversy, the Media, and Public Responses to Bisphenol A: Sci Commun.
611 612	Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. 1995. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 103:608–612.
613 614	Buglass AJ. 2010. Other Trace Substances in Alcoholic Beverages. <i>In</i> Handbook of Alcoholic Beverages. AJ Buglass (ed.), pp. 1093–1110. John Wiley & Sons, Ltd;
615 616	Butzke C, Suprenant A. 1998. Cork Sensory Quality Control Manual. University of California ANR Publication Number 21571.
617 618	Cadogan DF, Howick CJ. 2000. Plasticizers. <i>In</i> Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA;
619 620	Cao X-L. 2010. Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods. Compr Rev Food Sci Food Saf 9:21–43.

621 622 623	Carrillo JD, Salazar C, Moreta C, Tena MT. 2007. Determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography–mass spectrometry: Fibre comparison and selection. J Chromatogr A 1164:248–261.
624 625 626	Carrillo JD, Martínez MP, Tena MT. 2008. Determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry: Use of deuterated phthalates as internal standards. J Chromatogr A 1181:125–130.
627 628 629	Castle L, Mercer AJ, Startin JR, Gilbert J. 1988. Migration from plasticized films into foods 3. Migration of phthalate, sebacate, citrate and phosphate esters from films used for retail food packaging. Food Addit Contam 5:9–20.
630	Ceresana. 2011a. Market Study: Stabilizers (UC-2015). Ceresana.
631	Ceresana. 2011b. Market Study: Pigments. Ceresana.
632	Ceresana. 2011c. Market Study: Flame Retardants. Ceresana.
633	Ceresana. 2012. Market Study: Biocides. Ceresana.
634	Ceresana. 2013. Market Study: Antioxidants (UC-5005). Ceresana.
635 636	China.org. 2012. Chinese alcohol maker apologizes for contamination. China.org.cn. as found on the website (http://www.china.org.cn/china/2012-11/22/content_27200395.htm).
637 638	Chirayil CJ, Mathew L, Thomas S. 2014. Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28.
639 640	Christaki T, Tzia C. 2002. Quality and safety assurance in winemaking. Food Control 13:503– 517.
641 642 643	D20 Committee. 2010. ASTM D7611/D7611M-10: Standard Practice for Coding Plastic Manufactured Articles for Resin Identification. ASTM International, West Conshohocken, PA.
644	David RM. 2000. Human Exposure Estimates for Phthalates. Environ Health Perspect 108:4.
645	Deanin RD. 1975. Additives in Plastics. Environ Health Perspect 11:35-39.

646 647 648	Del Carlo M, Pepe A, Sacchetti G, Compagnone D, Mastrocola D, Cichelli A. 2008. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chem 111:771–777.
649 650	DiGangi J, Schettler T, Cobbing M, Rossi M. 2002. Aggregate Exposures to Phthalates in Humans. Health Care Without Harm.
651	Dow. 2013. Product Safety Assessment: SARANEX TM Films.
652 653	Dow. 2014. Regulatory Data Sheet: DOW DPDA-3135 NT 7 Medium Density Polyethylene Resin.
654 655	Du C, Sabirova J, Soetaert W, Lin SKC. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol:14–25.
656	DuPont. 2007. DuPont TM Sorona® EP Thermoplastic Polymer (K-16836).
657 658	Easton S. 2010. Cork stoppers – with extra membrane? : WineWisdom. as found on the website (http://www.winewisdom.com/articles/closures/cork-stoppers-with-extra-membrane/).
659 660	EFSA. 2015. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Opinion on BPA. EFSA J 13:3978.
661	Elastocon. 2015. Elastocon OF65.
662 663 664	EU. 2008. European Union Updated Risk Assessment Report. Bisphenol A, CAS No: 80-05-7. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, 3rd Priority List, Luxembourg.
665 666	EU. 2011. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food (L 12/1, 15.1.2011).
667 668 669	Fasano E, Bono-Blay F, Cirillo T, Montuori P, Lacorte S. 2012. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 27:132–138.
670 671 672	Gander P. 2016. Bisphenol A-free can coatings in limbo. foodmanufacture.co.uk. as found on the website (https://www.foodmanufacture.co.uk/Article/2016/08/15/Bisphenol-A-free-can-coatings-in-limbo).

673 674 675 676	Gennings C, Hauser R, Koch H, Kortenkamp A, Lioy P, E. Mirkes P, A Schwetz B. 2014. Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives Final Report (with Appendices). U.S. Consumer Product Safety Commission Directorate for Health Sciences.
677 678	Ghidossi R, Poupot C, Thibon C, Pons A, Darriet P, Riquier L, De Revel G, Mietton Peuchot M. 2012. The influence of packaging on wine conservation. Food Control 23:302–311.
679 680	Gill S. 2018. What is the average weight for men? Med News Today. as found on the website (https://www.medicalnewstoday.com/articles/320917.php).
681 682	Global Times. 2013. Plasticizer scandals dull French cognac luster. Glob Times. as found on the website (http://www.globaltimes.cn/content/765497.shtml).
683 684 685	Goth H. 2007. New BASF plasticizers meet users' requirements. as found on the website (http://www.plasticsportal.net/wa/plasticsEU~en_GB/portal/show/common/plasticsportal_news/2007/07_287).
686 687	Graham PR. 1973. Phthalate Ester Plasticizers- Why and How They Are Used. Environ Health Perspect 3:3–12.
688 689	Grignard E, Lapenna S, Bremer S. 2012. Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S. Toxicol In Vitro 26:727–731.
690 691	Grossman RF (Ed.). 2008. Handbook of Vinyl Formulating, 2nd Edition. John Wiley & Sons, New Jersey.
692 693 694	Groth E, Silbergeld M. 1998. Endocrine Disrupting Chemicals in Plastic Wraps Letter From Consumers Union to FDA 5jun98. Mindfully.org. as found on the website (http://www.mindfully.org/Plastic/EDs-Plastic-Wraps-CU5jun98.htm).
695 696 697	Guo Y, Zhang Z, Liu L, Li Y, Ren N, Kannan K. 2012. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J Agric Food Chem 60:6913–6919.
698 699 700	Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV. 2003. Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect 111:1180–1187.

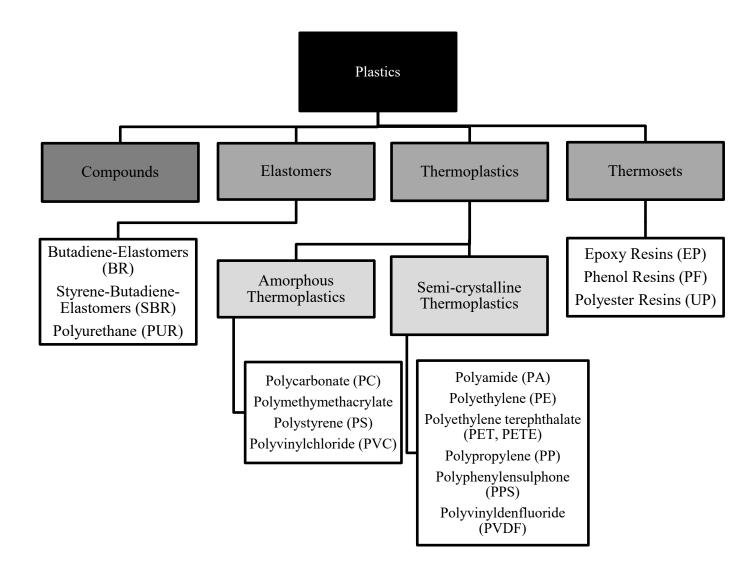
701 702 703	IPCS. 1992. Environmental Health Criteria 131: Diethylhexyl phthalate (EHC 131, 1992). Int Programme Chem Saf. as found on the website (http://www.inchem.org/documents/ehc/ehc/ehc131.htm).
704 705 706	ISO. 2005. ISO 22000:2005 - Food safety management systems Requirements for any organization in the food chain. No. 22000:2005International Organization for Standardization.
707 708	Jennings R. 2012. The End of Wine Corks? RJJonWine.com. as found on the website (http://www.rjonwine.com/wine-science/the-end-of-wine-corks/).
709 710	Johnston NE, Velikova DN. 2016. Millennial Wine Consumers: Attitudes towards Alternative Wine Packaging. Texas Wine Marketing Research Institute, Lubbock, TX.
711 712 713	Jurica K, Brčić Karačonji I, Lasić D, Vukić Lušić D, Anić Jurica S, Lušić D. 2016. Determination of phthalates in plum spirit and their occurrence during plum spirit production. Acta Aliment 45:141–148.
714 715	Karačonji IB, Jurica SA, Lasić D, Jurica K. 2017. Facts about phthalate toxicity in humans and their occurrence in alcoholic beverages. Arch Ind Hyg Toxicol 68.
716 717	Klein R. 2011. Material Properties of Plastics. <i>In</i> Laser Welding of Plastics. pp. 3–69. Wiley- VCH Verlag GmbH & Co. KGaA;
718 719 720	Krimm S, Tobolsky AV. 1951. Quantitative x-ray studies of order in amorphous and crystalline polymers. Quantitative x-ray determination of crystallinity in polyethylene. J Polym Sci 7:57–76.
721 722 723	Lambert C, Larroque M. 1997. Chromatographic analysis of water and wine samples for phenolic compounds released from food-contact epoxy resins. J Chromatogr Sci 35:57–62.
724 725	Larroque M, Vian L, Blaise A, Brun S. 1988. Méthodes de dosage des monomères résiduels des résines époxydiques dans des simulants du vin. J Chromatogr A 445:107–117.
726 727	Latini G, De Felice C, Verrotti A. 2004. Plasticizers, infant nutrition and reproductive health. Reprod Toxicol 19:27–33.

728 729 730	Le HH, Carlson EM, Chua JP, Belcher SM. 2008. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176:149–156.
731	Leake L L. 2014. Wine Quality and Safety 101. Food Qual Saf.
732 733	Leibowitz JN, Sarmiento R, Dugar SM, Ethridge MW. 1995. Determination of Six Common Phthalate Plasticizers in Grain Neutral Spirits and Vodka. J AOAC Int 78:730–735.
734 735 736	Li J, Su Q, Li K-Y, Sun C-F, Zhang W-B. 2013. Rapid analysis of phthalates in beverage and alcoholic samples by multi-walled carbon nanotubes/silica reinforced hollow fibre-solid phase microextraction. Food Chem 141:3714–3720.
737 738	Lithner D, Larsson Å, Dave G. 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324.
739 740 741	Lorber M, Schecter A, Paepke O, Shropshire W, Christensen K, Birnbaum L. 2015. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int 77:55–62.
742 743 744	Lowell Center for Sustainable Production. 2011. Phthalates and their alternatives: Health and environmental concerns. Technical BriefingLowell Center for Sustainable Production, University of Massachusetts Lowell.
745 746	Macek PV, Burkhardt CA. 2011. Analysis of Low Concentration BPA in Consumer Products by GC/MS without Derivatization (EAS2011-GCMS-001).
747 748	Martínez-Rodríguez AJ, Carrascosa AV. 2009. HACCP to control microbial safety hazards during winemaking: Ochratoxin A. Food Control 20:469–475.
749 750 751 752	Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S - i., Kimura M, Shimohigashi Y. 2007. Structural Evidence for Endocrine Disruptor Bisphenol A Binding to Human Nuclear Receptor ERR. J Biochem (Tokyo) 142:517– 524.
753 754 755	McDonald GR, Hudson AL, Dunn SMJ, You H, Baker GB, Whittal RM, Martin JW, Jha A, Edmondson DE, Holt A. 2008. Bioactive Contaminants Leach from Disposable Laboratory Plasticware. Science 322:917–917.

756 757 758 759	Misko G. 2016. California to allow temporary point-of-sale, Prop 65 warnings for BPA exposure. Packag Dig. as found on the website (http://www.packagingdigest.com/labeling/california-to-allow-temporary-point-of-sale-prop-65-warnings-for-bpa-exposure-2016-05-16).
760	Molina-Molina J-M, Amaya E, Grimaldi M, Sáenz J-M, Real M, Fernández MF, Balaguer P,
761	Olea N. 2013. In vitro study on the agonistic and antagonistic activities of bisphenol-S
762	and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl
763	Pharmacol 272:127–136.
764 765 766	Moreira M, André L, Cardeal Z. 2013. Analysis of Phthalate Migration to Food Simulants in Plastic Containers during Microwave Operations. Int J Environ Res Public Health 11:507–526.
767 768	Müller S. 2017. Test examines the chemicals in soda cans. Forbrugerrådet Tænk Kemis. as found on the website (http://kemi.taenk.dk/bliv-groennere/test-examines-chemicals-soda-cans).
769	Nara K, Nishiyama K, Natsugari H, Takeshita A, Takahashi H. 2009. Leaching of the Plasticizer,
770	Acetyl Tributyl Citrate: (ATBC) from Plastic Kitchen Wrap. J Health Sci 55:281–284.
771 772 773	Natural Resources Defense Council. 2011. Food Storage Containers. Nat Resour Def Counc. as found on the website (http://www.nrdc.org/living/shoppingwise/food-storage-containers.asp).
774 775 776	NIAAA. What Is A Standard Drink? Natl Inst Alcohol Abuse Alcohol NIAAA. as found on the website (https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/what-standard-drink).
777	Noonan GO, Ackerman LK, Begley TH. 2011. Concentration of Bisphenol A in Highly
778	Consumed Canned Foods on the U.S. Market. J Agric Food Chem 59:7178–7185.
779	Nordqvist C. 2018. Moderate drinking: Women and men, alcohol limits, benefits, risks. Med
780	News Today. as found on the website
781	(https://www.medicalnewstoday.com/articles/265799.php).
782	N.Z. FSA. 2017. Generic HACCP Application: Production of Grape Wine. NZ Food Saf Auth.
783	as found on the website
784	(http://www.foodsafety.govt.nz/elibrary/industry/Generic_Haccp-
785	Document_Provides.pdf).

786 787 788	O'Donnell B. 2016. Wine in Cans Trend on the Rise. WineSpectator.com. as found on the website (http://www.winespectator.com/webfeature/show/id/Would-You-Pop-Open-Up-Can-of-Pinot).
789 790	OEHHA. 2015. OEHHA Proposition 65 - BPA listed. Calif Environ Prot Agency's Off Environ Health Hazard Assess OEHHA. as found on the website
791	(http://oehha.ca.gov/prop65/CRNR_notices/list_changes/051115listBPA.html).
792 793 794	Pall Corporation. Cartridges and Elements for Wine Production. Pall Corp. as found on the website (http://www.pall.com/main/food-and-beverage/cartridges-and-elements-for-wine-product-53959.page).
795 796 797	Paseiro-Cerrato R, DeVries J, Begley TH. 2017. Evaluation of Short-Term and Long-Term Migration Testing from Can Coatings into Food Simulants: Epoxy and Acrylic–Phenolic Coatings. J Agric Food Chem 65:2594–2602.
798 799 800	Peyches-Bach A, Dombre C, Moutounet M, Peyron S, Chalier P. 2012. Effect of Ethanol on the Sorption of Four Targeted Wine Volatile Compounds in a Polyethylene Film. J Agric Food Chem 60:6772–6781.
801 802	Pfannkoch E, Whitecavage J. 2002. Stir Bar Sorptive Extraction from Food Simulating Solvents: Preliminary Studies.
803 804	Pivnenko K, Pedersen GA, Eriksson E, Astrup TF. 2015. Bisphenol A and its structural analogues in household waste paper. Waste Manag 44:39–47.
805	de Quirós AR-B, Varela NV, Sendón R. 2015. Study of the Migration of Three Model
806 807	Substances from Low Density Polyethylene into Food Simulant and Fruit Juices. Beverages 1:159–168.
808	Robertson GL. 2013. Food packaging: principles and practice. CRC Press, Boca Raton, FL.
809	Russo M, Notardonato I, Cinelli G, Avino P. 2012. Evaluation of an analytical method for
810 811	determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal Bioanal Chem
812	402:1373–1381.
813	Rust S, Spivak C, Kissinger M. 2007. Bisphenol A is in you. Millwaukee J Sentin.

814 815	vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. 2012. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 354:74–84.
816 817	Safer States. 2017. Bisphenol-A. Safer States. as found on the website (http://www.saferstates.com/toxic-chemicals/bisphenol-a/).
818 819 820	SC Johnson. Saran TM Premium Wrap. SC Johns. as found on the website (http://www.whatsinsidescjohnson.com/en-us/products-by-brand/saran/saran-premium- wrap.aspx).
821 822 823	Scheer R, Moss D. 2012. Is the Plastic in Boxed- Wine Liners BPA-Free? Sci Am. as found on the website (http://www.scientificamerican.com/article/bpa-free-plastic-bags-in-boxed-wines/).
824 825 826	Sendón R, Sanches-Silva A, Bustos J, Martín P, Martínez N, Cirugeda ME. 2012. Detection of migration of phthalates from agglomerated cork stoppers using HPLC-MS/MS. J Sep Sci 35:1319–1326.
827 828 829	Shanks RA, Kong I. 2013. General Purpose Elastomers: Structure, Chemistry, Physics and Performance. <i>In</i> Advances in Elastomers I. PM Visakh, S Thomas, AK Chandra, and AP Mathew (eds.), pp. 11–45. Springer Berlin Heidelberg, Berlin, Heidelberg;
830	Sheftel VO. 2000. Indirect Food Additives and Polymers: Migration and Toxicology. CRC Press.
831 832 833	Six T, Feigenbaum A. 2003. Mechanism of migration from agglomerated cork stoppers. Part 2: Safety assessment criteria of agglomerated cork stoppers for champagne wine cork producers, for users and for control laboratories. Food Addit Contam 20:960–971.
834 835	Six T, Feigenbaum A, Riquet A-M. 2002. Mechanism of migration from agglomerated cork stoppers: I. An electron spin resonance investigation. J Appl Polym Sci 83:2644–2654.
836 837	Smith JS, Hui YH (Eds.). 2004. Food Processing: Principles and Applications. John Wiley & Sons, Chicester.
838	Smith RA. 2013. Food Safety Modernization Act. Wines Vines September.
839	Sommerfield EH, Stoesser WC. 1953. Method of making 4-tertiary-butylphenyl salicylate.


840 841 842	 Steeman A. 2010. Wine Bottle Closures - The synthetic or plastic stopper for wine bottles (part 4). Best Packag. as found on the website (http://bestinpackaging.com/2010/05/20/wine-bottle-closures-the-synthetic-or-plastic-stopper-for-wine-bottles-part-4/).
843	Teichgraeber T. 2005. Concrete Fermenters: from old school to New World. Wines Vines:22–26.
844 845 846 847	Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027– 2045.
848 849 850	Till DE, Reid RC, Schwartz PS, Sidman KR, Valentine JR, Whelan RH. 1982. Plasticizer migration from polyvinyl chloride film to solvents and foods. Food Chem Toxicol 20:95–104.
851 852 853	Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, vom Saal FS. 2005. Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci U S A 102:7014–7019.
854 855 856 857	U.S. DHHS (U.S. Department of Health and Human Services). 2011. 12th Report on Carcinogens (RoC) - National Toxicology Program. US Dep Health Hum Serv. as found on the website (http://ntp.niehs.nih.gov/?objectid=03C9AF75-E1BF-FF40- DBA9EC0928DF8B15).
858 859 860	U.S. EPA. 1993. Integrated Risk Information System: Bisphenol A. (CASRN 80-05-7): Oral RfD Assessment: Bisphenol A. US Environ Prot Agency. as found on the website (http://www.epa.gov/iris/subst/0356.htm).
861 862	U.S. EPA. 2009. National Primary Drinking Water Regulations. U.S. Environmental Protection Agency.
863 864 865	U.S. EPA. 2012. Phthalates ActionPlan. US Environ Prot Agency. as found on the website (http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/phthalates_actionplan_revi sed_2012-03-14.pdf).
866 867 868	U.S. EPA. 2017a. Regional Screening Levels (RSLs) - Generic Tables (November 2017). US EPA[Data and Tools]. as found on the website (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017).

869	U.S. EPA. 2017b. Di(2-ethylhexyl)phthalate (DEHP); CASRN 117-81-7. US Environ Prot
870	Agency Integr Risk Inf Syst IRIS. as found on the website
871	(https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf).
872	U.S. EPA. 2017c. Diethyl phthalate; CASRN 84-66-2. US Environ Prot Agency Integr Risk Inf
873	Syst IRIS. as found on the website
874	(https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0226_summary.pdf).
875	U.S. EPA. 2017d. Dibutyl phthalate; CASRN 84-74-2. US Environ Prot Agency Integr Risk Inf
876	Syst IRIS. as found on the website
877	(https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0038_summary.pdf).
878	U.S. EPA. 2017e. Butyl benzyl phthalate; CASRN 85-68-7. US Environ Prot Agency Integr Risk
879	Inf Syst IRIS. as found on the website
880	(https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0293_summary.pdf).
881	US FDA. 1977a. e-CFR: TITLE 21—Food and Drugs, Part 177—Indirect Food Additives:
882	Polymers. Electron Code Fed Regul TITLE 21—Food and Drugs.
883 884	US FDA. 1977b. e-CFR: TITLE 21—Food and Drugs, Section 175.300 - Resinous and polymeric coatings. Electron Code Fed Regul.
885	US FDA. 2007a. Ingredients, Additives, GRAS & Packaging - Guidance for Industry:
886	Preparation of Premarket Submissions for Food Contact Substances (Chemistry
887	Recommendations).
888	US FDA. 2007b. Guidance & Regulation - Guidance for Industry: Preparation of Premarket
889	Submissions for Food Contact Substances (Chemistry Recommendations). Cent Food Saf
890	Appl Nutr[WebContent]. as found on the website
891	(https://www.fda.gov/Food/GuidanceRegulation/ucm081818.htm).
892 893 894	US FDA. 2013a. CFR - Code of Federal Regulations Title 21: Sec. 177.2600 Rubber articles intended for repeated use. US Food Drug Adm. as found on the website (http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=177.2600).
895	US FDA. 2013b. CFR - Code of Federal Regulations Title 21: Sec. 165.110 Requirements for
896	Specific Standardized Beverages: Bottled Water. US Food Drug Adm. as found on the
897	website
898	(http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=165.110).

899 900 901	US FDA. 2014. Food Additives & Ingredients - Bisphenol A (BPA). FDA Cent Food Saf Appl Nutr[WebContent]. as found on the website (https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/uc
902	m166145.htm).
903 904	Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. 2011. Natural-based plasticizers and biopolymer films: A review. Eur Polym J 47:254–263.
905 906	Wagner M, Oehlmann J. 2009. Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286.
907 908	White JL, Spruiell JE. 1981. Specification of biaxial orientation in amorphous and crystalline polymers. Polym Eng Sci 21:859–868.
909 910	Wool RP, Sun XS. 2005. Bio-based polymers and composites. Elsevier Academic Press, Amsterdam; Boston.
911 912 913	Yano K, Hirosawa N, Sakamoto Y, Katayama H, Moriguchi T, Joung KE, Sheen YY, Asaoka K. 2002. Phthalate Levels in Beverages in Japan and Korea. Bull Environ Contam Toxicol 68:463–469.
914 915	Yinan G. 2012. China probes liquor containing excessive plasticizer. People's Dly Online Engl. as found on the website (http://english.peopledaily.com.cn/90782/8030116.html).
916 917 918	Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199.
919 920	Zapel C. 2011. Behind the Science: Is there BPA in my wine? Wine Spect. as found on the website (http://www.winespectator.com/webfeature/show/id/45545).
921 922	Zheng Y, Monty J, Linhardt RJ. 2015. Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32.
923 924	Zhou Y, Wang H, Chen Y, Jiang Q. 2011. Environmental and food contamination with plasticisers in China. The Lancet 378:e4.
925 926	Zhu J. 2012. Plasticizers found in Chinese wine. China Dly. as found on the website (http://www.chinadaily.com.cn/china/2012-11/20/content_15946156.htm).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Figure 1 Classification of Plastics (modified from Klein 2011).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Resin Code ¹	Polymer Name	Uses				
	Polyethylene terephthalate	Drink/water and soda bottles, juice boxes, liquor bottles, food trays, condiment jars, plastic film, microwavable packaging.				
2 HDPE	High-density polyethylene	Milk, juice, water jugs, detergent bottles.				
X V	Polyvinyl chloride	Bottles for cooking oil, salad dressing, mouthwash, and liquor. Plastic wrap, "blister packs", plastic pipes.				
	Low-density polyethylene	Produce, frozen food, and bread bags, trash bags, squeezable bottles.				
PP	Polypropylene	Condiment and medicine bottles, drinking straws, yogurt containers, margarine tubs.				
∠_6 PS	Polystyrene	Egg cartons, disposable plastic table ware (cups, plates, cutlery), packaging foam/"peanuts", "clamshell packaging", food carry- out containers.				
7 Other	Other (includes polycarbonate)	Injection molded drinking bottles, glasses and food containers.				

 Table 1 Resin Identification Code (D20 Committee 2010).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Chemical class	Compound	Abbr.	CAS number	Formula	SIM	MW	Limits
	Dimethyl phthalate	DMP	131-11-3	C ₁₀ H ₁₀ O ₄	163 ª	194	
	Diethyl phthalate	DEP	84-66-2	C ₁₂ H ₁₄ O ₄	149-177 ^a	222	
Phthalate	<i>n</i> -Dibutyl phthalate	DBP	84-74-2	C ₁₆ H ₂₂ O ₄	149-205 ª	278	
rimatate	Butyl cyclohexyl phthalate	BcEP	84-64-0	C ₁₈ H ₂₄ O ₄	149-223 ª	304	
	Butyl benzyl phthalate	BBP	85-68-7	C ₁₉ H ₂₀ O ₄	149-206 ª	312	
	Bis-(2- ethylhexyl) phthalate	DEHP	117-81-7	C ₂₄ H ₃₈ O ₄	149-167 ª	390	0.006 mg/L ^{b,c}
	Bisphenol A	BPA	80-05-7	C15H16O2	(213.10, 228.10, 119.05, 216.10, 234.10, 121.05) ^d	228	0.05 mg/kg-day ^{e,f}
Bisphenol	Bisphenol F	BPF	620-92-8	$C_{13}H_{12}O_2$		200	
20	Bisphenol S	BPS	80-09-1	C ₁₂ H ₁₀ O ₄ S		250	

Table 2 Common Phthalate Esters and Bisphenols.

^aRusso et al. 2012, ^bU.S. E.P.A. 2009, ^cU.S. F.D.A. 2013b, ^dMacek and Burkhardt 2011, ^eU.S. E.P.A. 1993, ^fEU 2008.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Activity	Туре	Item	Material	Potential Additive	
		Flexible transport tank	PE, PP, polyester, PVC	DBP, DEP, DEHP, DMP ^a , BPA	
Transport	Container	Intermediate Bulk Containers (IBC's), drums, totes, and bins	PE, HDEP, PP	DBP, DEP, DEHP, DMP ^a	
	Crush	Press bladder membrane	Nylon, rubber, polyester,	?	
	Crusii	Conveyor belts	PVC, silicone		
Equipment	Pumps & hoses	Seals, impellers, bearings, lines, hoses	PE, polyacetal, PVC	DBP, DEP, DEHP, DMP ^a , BPA	
	Tanks/ containers/ barrels	Poly tanks	PE	DEHA, DBP, DEHP	
		Fiberglass tanks	Fiberglass-epoxy/PVC	BPA	
		Concrete	May be lined with epoxy ^c which may contain PVC _{d,e,f}		
Ingredients	Fining	Resins	?	?	
Filtration	Media & housings	Pads and resins			
		Reverse osmosis membranes	PP, Nylon, polyethersulfone, silicone	DBS, DEP, DIBP	
		Ultrafiltration media	elastomer ^{g,h}		
	Bottle stoppers	Synthetic "cork"	#4 LDPE or #7 mixed plastics	DBP, DEP, DEHP, DMP ^{a,c} , DEHA ^b	
		Agglomerate corks	PUR	DEHP ⁱ	
Packaging		Natural cork coatings	Paraffin, waxes, silicon, other polymer coatings ^j	?	
		Screw cap liners	#4 LDPE, PVC, PVDC	DBP, DEP, DEHA; DEHP, DMP ^{a,b,k}	
	Containers	Bag-in-Box	PE, #7 mixed plastics/PC	DBP, DEP, DEHP, DMP ^a , BPA ^d	
		PET bottles	PET	DBP, DEP, DEHP, DMP ^a	
		Aluminum can lining	Epoxy/PVC, #7 Mixed plastics ^d /PC ¹	BPA	

	Table 3	Potential	sources	oft	olastic	ext	posure	in	the	production	of wi	ne.
--	---------	-----------	---------	-----	---------	-----	--------	----	-----	------------	-------	-----

^aBuglass 2010, ^bGroth and Silbergeld 1998, ^cZapel 2011, ^dScheer and Moss 2012, ^eSheftel 2000. ^fTeichgraeber 2005, ^gPall Corp. 2014, ^h3M 2011, ⁱSix and Feigenbaum 2003, ^jAmerine and Joslyn 1970, ^kNara et al. 2009, ^lNatural Resources Defense Council 2011. American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17041

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Material	Name	Abbr.	Sources
Plastic	Cellulose acetate ^a	CA	Cotton fibers and wood
Plastic	Cellulose acetate butyrate ^a	CAB	Cotton fibers and wood
Plastic	Cellulose acetate propionate ^a	CAP	Cotton fibers and wood
Plastic	Cellulose nano-composites ^b		Obtained by chemical treatments and steam
	-		explosion of cellulose materials
Plastic	Corn zein ^a		Corn
Plastic	Lignin ^a		Plants and wood
Plastic	Natural fiber reinforced		Kenaf, hemp, ramie, flax, sisal, jute,
	composites ^a		pineapple leaf
Plastic	Polyhydroxyalkanoate ^c	PHA	Whey, lignocellulosic raw materials,
			molasses, glycerol, fats, wastewater
Plastic	Polylactic Acid ^a	PLA	Corn, sugar beets, sugar cane, wheat, sweet
			potatoes, rice
Plastic	Polysaccharide nanocomposites ^d		Heparin, chitosan, cellulose, hyaluronan,
			starch, alginate, pectin, guar, starch/chitosan,
			chitosan/heparin, chitosan/hyalurona,
			hyalurona/heparin, cellulose and chitin
			whiskers, platelet-like starch
Plastic	Poly(trimethylene terephthalate)	PTT	Sugar from corn with terephthalic acid (PTA)
	e		or dimethyl terephthalate (DMT) derived from
			petroleum ^f
Plastic	Soy protein ^a		Soybeans
Plastic	Starch derived plastics:	TPS	Corn, potato, rice, wheat, tapioca
	Thermoplastic starch ^a		
Plastic	Urethanes: Polyol ^a		Soy oil/soybean, castor oil, rapeseed,
			sunflower, linseed
Plasticizer	Acetyl tributyl citrate	ATBC	Citric acid derivative
Plasticizer	Acetyl triethyl citrate	ATEC	Citric acid derivative
Plasticizer	Acetyl trihexyl citrate	ATHC	Citric acid derivative
Plasticizer	Acetyl trioctyl citrate	ATOC	Citric acid derivative
Plasticizer	Acetylated monoglycerides		Edible fats and triacetin
Plasticizer	Butylated hydroxytoluene	BHT	Phenol derivative
Plasticizer	Butyl Stearate		Stearic acid and butyl alcohol
Plasticizer	Butyryl trihexyl citrate	BTHC	Citric acid derivative
Plasticizer	Epoxized soybean oil	ESBO	Soybeans
Plasticizer	p-tert-Butyl phenyl salicylate		4-tertiary-butylphenol and salicylic acid ^g
Plasticizer	Tributyl citrate	TBC	Citric acid derivative
	Triethyl citrate	TEC	Citric acid derivative
Plasticizer			
Plasticizer Plasticizer	Trihexyl citrate	THC	Citric acid derivative

Table 4 Bio-based plastics and plasticizers.

^aWool and Sun 2005, ^bChirayil et al. 2014, ^cDu et al. 2012, ^dZheng et al. 2015, ^cDuPont 2007, ^fÁlvarez-Chávez et al. 2012, ^gSommerfield and Stoesser 1953.