AJEV Papers in Press. Published online October 30, 2014.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

1	Review Article
2	Glycosidically Bound Volatile Aroma Compounds in
3	Grapes and Wine: A Review
4	Anna K. Hjelmeland ¹ and Susan E. Ebeler ¹ *
5 6	¹ Department of Viticulture and Enology; Agricultural and Environmental Chemistry Graduate Group; and Food Safety and Measurement Facility, University of California, Davis, CA 95616.
7	*Corresponding author (seebeler@ucdavis.edu)
8 9 10 11 12 13 14 15	Acknowledgments: This paper was originally presented <i>In Proceedings of Evaluating Wine Flavor through Chemical and Sensory Analyses</i> , at the ASEV Symposium Honoring Ann C. Noble, 31 January 2014, Sacramento, California. Partial financial support is provided to AKH through the David E. Gallo Educational Enhancement Award, the Horace O. Lanza Scholarship, the Haskell F. Norman Wine and Food Scholarship, the Mario P. Tribuno Memorial Research Fellowship, and the Wine Spectator Scholarship. The authors dedicate this manuscript to Dr. Ann Noble in recognition of her valuable contributions that have significantly advanced our understanding of wine flavor chemistry and sensory analysis.
16	Manuscript submitted Sept 2014, accepted Sept 2014
17	Copyright © 2014 by the American Society for Enology and Viticulture. All rights reserved.
18	
19	Abstract: Volatile aroma compounds in plants are typically found both as "free" and "bound"
20	to a sugar moiety. When bound, these compounds are not odor active; however, upon hydrolysis
21	of the glycoside, these compounds may then be volatilized. In grapes and wine, a large
22	proportion of volatile aroma compounds are found in the bound form. A review of glycosides in
23	grapes and in wine is presented with a focus on identified glycoside structures, their biosynthesis,
24	their potential roles in the plant, and methods for their analysis. Studies of these compounds and
25	their concentration changes during the winemaking process are discussed.
26	Key words: glycosides, enzyme hydrolysis, acid hydrolysis, grapes, wine, aroma
27	Introduction
28	The first volatile aroma glycosides were identified in rose in 1969 (Francis and Allcock
29	1969). While their presence was suggested in 1974 (Cordonnier and Bayonove 1974), it was not

PAPERS IN PRES AJEV AJEV PAPERS IN PRESS AJEV PAPERS IN PRESS

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

until 1982 that these aroma precursors were first identified in grape (Williams et al. 1982a). The 30 first evaluations on the sensory properties of glycosides in grapes and wines were done by Noble 31 32 and coworkers. They demonstrated that although glycosides may be perceived as bitter in model solutions, they do not occur in high enough concentrations to contribute to bitterness in wine 33 (Noble et al. 1987, 1988). Further, they observed that glycosides in terpenic grapes and wines 34 35 were "an important reserve of potential wine flavor" (Nobel et al. 1987). In addition to these studies, Noble and coworkers observed that ~90% of the monoterpenes were found in the 36 glycosylated, or "bound," form in Muscat of Alexandria grapes (Park et al. 1991). 37 This early foundational work demonstrated the necessity of glycoside analysis to study 38 grape aroma composition. Since the discovery of volatile aroma glycosides in grape, researchers 39 40 have studied ways to exploit this potential flavor reserve as a means to improve wine aroma. In addition, analysis of volatile aroma glycosides has become increasingly important to the wine 41 industry with the discovery of smoke-taint glycosides (Havasaka et al. 2010b). In these cases, it 42 was observed that large fires burning in close proximity to vineyards during the grapegrowing 43 44 season produced smoke-tainted grapes and wine. In addition, concentrations of off-aromas appeared to increase during fermentation, leading to a hypothesis that smoke-taint glycosides 45 were being hydrolyzed during fermentation, "freeing" the off-aromas and resulting in smoke-46 tainted wines (Kennison et al. 2008). This hypothesis was later confirmed (Hayasaka et al. 47 2010b). 48

The scope of this review is not intended to be exhaustive, but to inform the reader on progress made in the field of volatile aroma glycosides in grape and wine research and to draw attention to areas where further studies may prove useful. Many past reviews are recommended

if further detail is required. Winterhalter and Skouroumounis have a comprehensive review of 52 volatile aroma glycosides in a variety of plants (Winterhalter and Skouroumounis 1997). More 53 specific reviews on glycoside formation (Bowles et al. 2006, Jones and Vogt 2001, Vogt and 54 Jones 2000), enzyme hydrolysis (Sarry and Günata 2004), and enzymatic hydrolysis effects on 55 winemaking (Günata et al. 1993) are recommended as well. The current review will present 56 57 structures of identified glycosides, information on how glycosides are formed and theories on their roles in plants, analytical methods for their characterization and quantitation, and an 58 overview of the role of winemaking processes on glycoside concentration and hydrolysis. The 59 information presented will be primarily focused on glycosides in grapes and wine; however, 60 when few or no studies have been done on grape, information on other plants will be given. 61

62

Structures of Glycosides

63 Aglycones. Glycosides are comprised of an aglycone that is linked to one or more sugar moieties: that is, the glycone. In grapes as with other plants, straight chain alcohols, volatile 64 terpenoids, shikimic acid metabolites, and norisoprenoids (Winterhalter and Skouroumounis 65 1997) have all been identified as aglycones of volatile aroma glycosides. Examples of these from 66 67 the different classes are shown (Figure 1). These different classes of aglycones, however, do not behave the same way upon hydrolysis of their corresponding glycosides. Typically, monoterpene 68 glycosides will produce a volatile aroma compound directly upon hydrolysis (Figure 2A). In 69 70 contrast, norisoprenoid glycosides may produce odorless products after hydrolysis which require further chemistry (e.g., acid catalyzed rearrangements) to produce the volatile aroma compound 71 (Sefton et al. 2011, Winterhalter and Skouroumounis 1997). This is well demonstrated by a 72

proposed hydrolysis scheme of the norisoprenoid β-damascenone (Kinoshita et al. 2010) (Figure
2B).

Glycones. To date, all glycosides of aroma compounds have been shown to include a direct 75 linkage of the aroma compound to a β -D-glucose moiety (Winterhalter and Skouroumounis 76 1997). This is in contrast to other metabolites that may be linked to other sugars, such as the case 77 of quercetin, which, in addition to a glucose, may also be glycosylated to glucuronic acid 78 79 (Castillo-Muñoz et al. 2007) (Figure 3). Volatile aroma monosaccharide glycosides, or glucosides, are often found esterified to a malonyl group (Sarry and Günata 2004). The addition 80 of other sugars to the glucose moiety will form disaccharide, trisaccharide, and higher order 81 saccharide glycosides. In grapes, rhamnose and arabinose (Williams et al. 1982a) along with 82 apiose (Voirin et al. 1990) have been identified as terminal sugars in disaccharide glycosides. 83 84 Figure 4 shows the structures of identified glycones in grape, together with their names, and 85 common names, when available. An additional β -D-glucose has been identified as the terminal 86 sugar moiety of volatile aroma disaccharide glycosides in other plants (Winterhalter and Skouroumounis 1997). In addition, although identified in other plants, such as tomato (Tikunov 87 et al. 2010) and apple (Herderich et al. 1992), to date, no higher order saccharides beyond 88 disaccharides have been identified as glycosylated to volatile aroma compounds in grape. 89

In summary, because volatile aroma compounds are often not directly produced from hydrolysis of glycosidic precursors, as is the case with norisoprenoids, it can be difficult to link volatile aroma compounds to specific precursors. While many volatile aroma glycosides have been identified in grape, many identified in other plants have not been found in grape. It is not clear if these compounds are not present in grapes, if they exist in low levels that are difficult to

95 detect, or if limitations in our current analytical methods have prevented their identification thus far. In order to improve our understanding of glycosidic hydrolysis mechanisms and improve our 96 97 ability to quantify them, further studies on glycoside structures are needed. Formation and Roles of Glycosides in Grapes 98 99 Several theories exist as to why plants glycosylate flavor compounds (Jones and Vogt 2001, Stahl-Biskup et al. 1993). In recent years there have been an increasing number of studies on 100 101 biosynthesis of glycosides with regard to the enzymes that catalyze their formation and the 102 cellular locations of these enzymes. However, many of these studies have been done on model 103 plant systems and not on grapes. Those studies done on grapes have generally focused on the enzymes involved in formation of glycosylated compounds not related to aroma, such as 104 flavonoid and anthocyanin glycosides (Ono et al. 2010). Knowledge of why and how plants 105 106 glycosylate volatile aroma compounds may allow us to manipulate their formation through 107 alterations in production practices (light exposure, water stress, etc.), thereby altering the aroma profile of the plant and/or fruit. 108

109

Biosynthesis of Glycosides in Plants and Location in Grape Berries

Our understanding of the formation of glycosides is largely based on studies done in model plant systems (i.e., *Arabidopsis thaliana*). These studies indicate that glycosides are produced by glycosyltransferase enzymes, which add an activated sugar moiety to the aglycone (Figure 5) (Bowles et al. 2006, Vogt and Jones 2000). UDP-glucose, -rhamnose, -galactose, -xylose, and glucuronic acid have all been identified as activated sugars (Bowles et al. 2006, Jones and Vogt 2001). A variety of functional groups present on an aglycone have been shown to be acceptors for these activated sugars, including -COOH, -NH2, -SH, -OH, C-C, among others. Based on the

5

solubility of glycosyltransferases and their lack of targeting information, many researchers have 117 assumed the glycosyltransferases are located in the cytosol of the plant cell (Bowles et al. 2006, 118 119 Jones and Vogt 2001). Primary protein sequences of glycosyltransferases support this theory; however, it may also be possible that they are associated with the cytosolic side of membrane 120 compartments (Bowles et al. 2006) or as part of multienzyme complexes (Burbulis and Winkel-121 122 Shirley 1999). In addition, the presence of a luteolin tri-glycosyltransferase was shown in the vacuole of Secale cereale (Anhalt and Weissenböck 1992) and the association of a 123 Chrysoplenium americanum glycosyltransferase with the endoplasmic reticulum has been 124 proposed (Ibrahim 1992). To our knowledge, there have been no studies published on subcellular 125 locations of glycosyltransferases in grape. 126

127 Over 240 putative glycosyltransferases have been identified in Vitis vinifera based on screening of the grape genome (Jaillon et al. 2007). However, the number of these putative genes 128 that are truly glycosyltransferase genes and the number actually expressed are yet to be 129 130 determined. In addition, very little is known about substrate specificity of glycosyltransferases in 131 plants, let alone in grape (Jones and Vogt 2001). Most studies to date have focused on the biosynthesis of flavonol glycosides. Ono et al. (2010) characterized two grape flavonol 132 glycosyltransferases, VvGT5 and VvGT6. Enzymatic activity was assessed by the percentage of 133 134 the aglycone that was able to be glycosylated. VvGT5 had no activity on 14 tested polyphenolics and showed varying activity toward quercetin (100%), kaempferol (51.5%), and isorhamnetin 135 (5.6%) (Ono et al. 2010). VvGT5 also was specific to the activated sugar UDP-glucuronic acid 136 as no activity was seen with the other activated sugars tested. VvGT6 was similarly specific to 137 138 flavonols, and while it showed activity to UDP-glucose and UDP-galactose, it was inactive

toward other activated sugars. Similar substrate specificity is seen in glycosyltransferases in
other plants (Vogt and Jones 2000). If glycosyltransferases are specific to a narrow group of
compounds, much of the data may not be applicable to volatile aroma glycosyltransferases.
These results stress the need for studies on the biosynthesis of volatile aroma glycosides
specifically.

144

Glycosides as a Flavor Reserve and as Detoxificants

Plant cell vacuoles function as metabolite reserves and are integral to detoxification (Marty 145 146 1999). Glycosides have been identified in the vacuole of the cell, which may corroborate these theories (Ferreres et al. 2011, Martinoia et al. 2000, Zhao et al. 2011). Grape berries lack 147 structures capable of storing small lipophilic molecules (Lund and Bohlmann 2006), unlike the 148 trichomes of mint, for example, Correspondingly, grapes appear to have higher concentrations of 149 glycosides relative to the volatile aroma counterparts (Koundouras et al. 2009, Park et al. 1991). 150 151 Typically, many aglycones have low solubility in aqueous solutions. For example, linalool has a predicted log octanol water coefficient of 3.38, but when glycosylated it has a predicted log K_{ow} 152 of 2.33 (estimates using KOWWIN in EPISuite, 153

www.epa.gov/opptintr/exposure/pubs/episuite.htm). The addition of a sugar moiety greatly
increases the solubility of the compounds, preventing diffusion across cellular membranes, and
thus provides a convenient storage form (Bowles and Lim 2010).

Most active aroma compounds are lipophilic; however, high localized concentrations of lipophilic molecules can be toxic to a plant, by disrupting cellular membranes, for example (Sikkema et al. 1995). In one study, cells from different types of plants were exposed to high levels of volatile aroma compounds, (i.e., menthol). Plant cells that glycosylated greater than

161 40% of the compounds, such as pear, for example, were able to continue growing while the 162 others, including grape, could not (Berger and Drawert 1988). Additional studies have shown concentrations of 1.5 mg/g fresh weight of hydrocarbon monoterpenes (i.e., α -pinene) and 163 monoterpenols (i.e., nerol) are enough to induce cell death during initial growing stages of plant 164 cells in vitro (Figueiredo et al. 1996). These results support the hypothesis that plants may 165 glycosylate volatile flavor compounds as a detoxification strategy (Hösel 1981). Further, 166 167 glycosylation appears to stabilize nucleophilic aglycones, preventing their reactivity with other 168 cellular structures by electron transfer reactions (Jones and Vogt 2001). It has been proposed that improved aqueous solubility through glycosylation of small lipophilic compounds might also 169 170 prevent their diffusion into the tonoplast, inhibiting their ability to move outside of the vacuole 171 (Wink and Roberts 1998). These findings suggest that movement of glycosides throughout the cell is limited or at least highly regulated. 172

173

The Translocation Theory

During photosynthesis plants take up carbon and produce sugars. This process predominately 174 175 occurs in the leaves. The sugars are then transported from these "sources" to various "sink" 176 organs of the plant, such as roots and reproductive organs. In grapes, the berries begin to 177 accumulate sugar at veraison. As such, it may be possible that flavor compounds may 178 accumulate in such a way as well. Translocation of these lipophilic aroma compounds would 179 likely be in the glycosidic form. Once a compound is glycosylated, it can be moved throughout the cell via membrane transport systems that recognize the sugar moieties (Bowles et al. 2006). 180 181 The apoplast is one such transport pathway in the plant cell. Glycosides have been identified in 182 the apoplast of the plant cell along with their corresponding glycosidases (Dietz et al. 2000,

183	Samuels et al. 2002) which supports the feasibility of glycosides as a translocation form of
184	volatile aroma compounds. Further, a study in peppermint, Mentha piperita L., showed that (-)-
185	menthone produced in leaves was first converted to (+)-neomenthol, glycosylated, and finally
186	translocated and accumulated in the rhizomes of the plant (Croteau and Martinkus 1979).
187	In contrast, several studies indicate that glycoside translocation may not be a means of
188	flavor precursor accumulation in grape berries. To test the theory of glycoside translocation,
189	Gholami and colleagues studied two grape varieties, a terpenic variety, Muscat of Alexandria,
190	and a non-terpenic variety, Syrah (Gholami et al. 1995). Muscat inflorescence clusters were
191	grafted to Syrah vines and vice versa. The data showed that the Muscat berries grown on Syrah
192	vines contained similar levels of terpenes to Muscat berries grown on Muscat vines, indicating
193	that little glycoside transport occurred. The effect was similar with Syrah. Syrah berries grown
194	on Muscat vines did not show an increase in terpene content relative to the control. A recent
195	study of smoke-taint glycosides obtained similar results (Hayasaka et al. 2010a). Labeled
196	guaiacol was fed to grape berries for 1 to 2 days and concentrations of the labeled glycoside in
197	the various plant tissues were analyzed after 35 days. Grapes that were fed labeled guaiacol
198	produced labeled glycoside but nearby leaves failed to show any labeled glycoside. Similarly,

leaves that were fed labeled guaiacol produced the labeled glycoside but proximal berries did not
accumulate the glycoside. These findings indicate that glycoside translocation may not be a
means of flavor precursor accumulation in grape berries. However, the study by Croteau and
Martinkus (1979) might indicate that studies done thus far may not have accounted for possible
conversions of the parent compound prior to glycosylation and translocation. Further, in many
cases, it is possible that the actual aglycone has not been identified due to subsequent

205	reactions/rearrangements that occur following hydrolysis. This has been observed, for example
206	with β -damascenone, where multiple glycoside precursors have been reported (Sefton et al.
207	2011), although none include direct conjugation to β -damascenone. Therefore, as further
208	discussed in the following section, current analytical methods do not allow us to fully predict
209	aglycone composition, and a less targeted approach will be necessary to account for different
210	aglycone structures. In addition, our knowledge of potential glycone composition and
211	substitution is hindered by our relatively limited knowledge of intact glycoside structures.
212	In summary, when found in high concentrations, volatile aroma compounds can be toxic
213	to plant cells. While studies have been conducted on glycosyltransferases, few have been done in
214	grape, and among those, none have been done on the enzymes that catalyze glycosylation of
215	volatile aroma compounds. Studies in other plant systems have shown glycosyltransferase
216	enzymes have high specificity, thus suggesting the need for studies specific to flavor compounds.
217	In addition, a greater knowledge of where these enzymes are located within the plant cell may
218	provide further insight into the feasibility of other possible roles of glycosides in plants, such as
219	translocators of volatile aroma compounds.

220

Analytical Techniques to Measure Glycosides

As previously stated, volatile aroma glycosides are found in higher levels than their unbound counterparts. As such, their analysis is crucial to studies on aroma profiles in grapes and wine. In order to correctly infer how fermentation, climate, viticultural practices, and other variables affect grape and wine volatile aroma profiles, these glycoside analytical methods must be reliable. Many methods exist, some of which analyze portions of the glycoside (i.e., the

10

aglycone), while others analyze the intact glycosidic precursor. An understanding of theprinciples of these methods will provide insight into potential method biases.

228 Preparatory techniques. Typically, analysis of grape and wine glycosides begins with a 229 preparative chromatographic technique to isolate and concentrate the glycosidic fraction. The 230 most frequently used method is solid-phase extraction (SPE), which can be done relatively quickly and is fairly inexpensive. For wine and grape analysis, the sorbent is typically reverse 231 232 phase, often C-18 (Williams et al. 1982b) or Amberilite XAD-2 (Günata et al. 1985). Samples are loaded (after homogenization and either filtration or centrifugation to remove solids, in the 233 case of grapes) and the column washed with water, which removes the highly polar compounds, 234 235 such as salts and free sugars. Subsequently, elution of glycosides and unbound volatile aroma 236 compounds is performed sequentially, using organic solvents with differing polarities. SPE can 237 be done on an analytical scale or a preparative scale. Günata et al. (1985) indicated that XAD-2 238 is better able to retain free monoterpene alcohols than C-18 phases, allowing for better recovery 239 of the volatile aroma fraction. However, the XAD-2 phase may be unable to separate glucose 240 from the glycosides completely, which may hinder further analyses (Williams et al. 1995). 241 Additionally, different C-18 phases may show differences in selectivity (Hampel et al. 2014). Research objectives should guide the choice of phase. 242

Subsequent to SPE, further separation may be desired depending on the research
objectives. Countercurrent chromatography, size exclusion chromatography, or preparative
HPLC are often used to further separate the glycosidic fraction (Winterhalter and
Skouroumounis 1997). Iterations of countercurrent chromatography have been used to purify
norisoprenoid glycosides in Riesling leaves, which were then structurally elucidated using NMR

(Skouroumounis and Winterhalter 1994). The authors note that countercurrent chromatography
is associated with fewer artifacts and has better recoveries than solid sorbent techniques such as
preparative HPLC and size exclusion chromatography.

251 Analysis of released aglycones. *Enzyme hydrolysis*. After obtaining the glycoside fraction 252 from the grape or wine sample, the fraction may be first hydrolyzed and the released aglycones 253 may be analyzed, typically using gas chromatography (GC). Glycosidic hydrolysis is done either 254 enzymatically or with the use of acid. Enzymatic hydrolysis is highly dependent on the choice of enzyme. Monosaccharide glycosides in grape may be hydrolyzed by endo- or exo-glucosidases. 255 However, disaccharide glycosides will only be hydrolyzed in a stepwise approach using two or 256 257 more enzymes or by the use of an endo-glycosidase (Figure 6). Many commercial enzyme 258 preparations have exo-glycosidase activities. Endo-glycosidase enzymes are able to hydrolyze the glycosidic linkage to the aglycone, regardless of the number of sugar moieties: that is, they 259 will have activity on monosaccharide and disaccharide glycosides, unlike the exo-glycosidases. 260 As all grape and wine glycosides identified to date have a glucose moiety directly attached to the 261 262 aglycone, the use of an endo-glucosidase should theoretically hydrolyze the glycosides in entirety. An endo-glucosidase was isolated and purified from Aspergillus niger grown on a 263 264 monoterpene glycoside-containing medium (Shoseyov et al. 1988). While the enzyme was 265 thermally stable and had optimum activity at pH 3.4, consistent with typical grape and wine pH 266 conditions, enzyme activity decreased with ethanol percentages greater than 9%. Additionally, activity was highly inhibited by glucose. Inhibition of glycosidases by ethanol and glucose is a 267 problem for many enzyme preparations as well and many have pH optima outside a relevant 268 269 range for grapes and wine (Aryan et al. 1987, Günata et al. 1990). Further, while studies have

12

indicated that fewer rearrangements of the released aglycone may occur during enzymatic
hydrolysis (Cordonnier and Bayonove 1974, Günata et al. 1985, Mateo and Jiménez 2000),
artifacts may still be produced via enzymic oxidation (Hampel et al. 2014, Winterhalter and
Skouroumounis 1997). These findings indicate that enzyme hydrolysis will likely be unable to
free a large number of aglycones and may potentially lead to identification of artifactual
aglycone structures.

Acid hydrolysis. Acidic hydrolysis is a widely used technique to liberate aglycones from 276 glycosides. As with enzymatic hydrolysis, subsequent to hydrolysis, aglycones are usually 277 analyzed by GC. Acid hydrolysis is less cost prohibitive and can be done more quickly compared 278 279 to enzymatic hydrolysis. Acid and enzyme hydrolysis procedures were compared in a study (Loscos et al. 2009), and while the enzyme hydrolysis occurred over 16 hours, the acid 280 hydrolysis was completed in one hour. Seven different grape varieties, both red and white, were 281 282 tested, and while the enzymatic hydrolysis appeared to release a higher concentration of terpenes (3 to 10x) for five of the seven cultivars, released norisoprenoid concentrations were greater by a 283 284 factor of 10 for the acid hydrolysis procedure for all cultivars. Furthermore, it has been theorized that acid hydrolysis in the grape berry is the most likely route for *in planta* liberation of 285 286 monoterpenes from their corresponding glycosides rather than endogenous enzymatic hydrolysis 287 (Williams et al. 1982c), as endogenous grape glycosidases are highly inhibited by glucose (Aryan et al. 1987, Günata et al. 1990). In Williams et al. (1982c), monoterpene glucosides were 288 hydrolyzed both with a glucosidase and also by acid. Acid hydrolysis yielded a wider variety of 289 290 compounds than did enzymatic hydrolysis. In addition, an isolated glycoside fraction from

grapes hydrolyzed with acid appeared to more closely resemble a grape berry volatile profilethan the enzymatically hydrolyzed sample.

293 While acid hydrolysis may be more reflective of grape and wine aroma than enzymatic 294 hydrolysis, it is precisely this difference that hinders identification of the intact glycosidic precursor. For example, at pH 3.0, linalyl, geranyl, and neryl glucosides all produced linalool and 295 296 α -terpineol as major products (Williams et al. 1982c). While this hydrolysis may be more indicative of what happens during the winemaking process, analysis of the hydrolysis products 297 298 will not yield credible information on the structure of the glycosidic precursor. Increasingly 299 lower pH is associated with more rearrangements of the aglycones, producing more artifacts 300 (Croteau 1987, Hampel et al. 2014, Sefton et al. 1989, Williams et al. 1982c). Both enzymatic 301 and acid hydrolysis techniques have drawbacks and benefits, and ultimately it is up to the researcher to decide which technique may be more congruent with their specific research goals. 302

Analysis of glycones. The glycosyl-glucose method. Most current glycoside analytical methods 303 are qualitative, focusing on the identity of the aglycone. Because few glycosidic structures are 304 305 known and few standards are available, traditional methods to quantify glycosides are difficult. 306 Based on the knowledge that glycosidic structures all contain one glucose moiety, researchers 307 created a method to quantify glycosides based on released glucose (Williams et al. 1995). An 308 estimation of glycoside concentration is made by isolating the glycosidic fraction, hydrolyzing it with acid, and using an enzyme assay to quantify released glucose. A control is used to account 309 310 for free glucose present in the initial sample. However, in addition to volatile aroma compounds, other compounds, such as phenolics, are glycosylated. In the case of red grapes, this interference 311 is of particular note, as there are high amounts of glycosylated anthocyanins present. In order to 312

14

313	achieve a glycosyl-glucose (G-G) concentration that is more reflective of the glycosylated
314	volatile aroma compounds, several studies have explored adaptations of the original method.
315	Iland et al. (1996) took a subsample of the grape homogenate, acidified it, and used a
316	spectrophotometric assay (Somers and Evans 1977) to obtain the anthocyanin concentration. The
317	quantification of anthocyanins was done using malvidin 3-glucoside for the external calibration
318	curve. This calculated anthocyanin concentration was subtracted from the "total G-G" (TGG)
319	concentration to give the "red-free G-G" concentration. The authors point out, however, that
320	while this approach is effective in grapes, it is not recommended for wine because the pigments
321	found in wine are found in polymeric form, whereas they are monomeric in grapes. A G-G value
322	that is more representative of just the volatile aroma glycoside concentration in wine must
323	account for these other sources of glycosylated interferences. To improve upon the G-G method
324	further by accounting for phenolic glycosides beyond anthocyanins, other researchers used the
325	Folin-Ciocalteu reagent to quantify the phenolic glycoside content in gallic acid equivalents,
326	which when subtracted from the TGG, yielded the "phenol-free G-G" (PFGG) (Zoecklein et al.
327	2000). Despite the improvements, some phenolic glycosides were still present in the PFGG.
328	These interferences, while greatly diminished, will hinder accurate quantification, which may
329	artificially inflate the observed concentration of flavor related G-G. However, the G-G method
330	and related techniques remain valuable tools for quantification of volatile aroma glycosides as
331	they are relatively quick and inexpensive, requiring no instrumentation beyond a
332	spectrophotometer.

Analysis of intact glycosides. *Derivitization techniques*. If structural knowledge of the
glycosidic precursor is desired, then a technique that analyzes the glycoside in its intact form is

necessary. Glycosides may be derivatized to increase their volatility, enabling them to be 335 analyzed by GC. Typically, this is done by acetylation, methylation, or silvlation (Winterhalter 336 337 and Skouroumounis 1997). While derivatization has been shown to be an effective tool for structural elucidation of glycosides, it is considered a "dirty" technique. For example, Wells 338 339 notes that residual trimethylsilyl (TMS) derivatizing agent from previous runs will derivatize 340 compounds as they are separated on the GC column (Wells 1999). Consequently, more routine instrument maintenance and cleaning is necessary. In addition, TMS may react with certain 341 functional groups to produce silvlation artifacts (Little 1999), leading to possible erroneous 342 identifications. For all methods, an empirical determination of derivatization efficiency is needed 343 to determine the necessary conditions to complete the derivatization (Pierce 1968). This 344 345 efficiency is substrate dependent and, as many glycosides are not available commercially as standards, empirical determination is often neglected, which may lead to incomplete 346 347 derivatization.

HPLC-techniques. In lieu of derivatization and subsequent GC analysis, liquid chromatography-348 mass spectrometry (HPLC-MS) can be used. This approach has gained increasing popularity as 349 the technology has improved. HPLC-MS techniques are generally soft-ionization techniques, as 350 opposed to electron ionization GC-MS, and thus do not produce unique compound fragmentation 351 352 spectra. In order to glean more structural information, HPLC coupled to tandem MS (MS/MS) approaches may be used. Pseudo-molecular ions are filtered by the first MS and then fragmented 353 in a collision cell by a gas with a variable charge applied. The resulting fragments are then 354 355 detected by the subsequent MS. Analysis of these so-called product-ion scans enables insight 356 into the structure of the molecule. Guaiacol glycosides were tentatively identified in grapes using

this approach (Hayasaka et al. 2010a). Figure 7 illustrates how analysis of the product ion 357 spectrum can be used for tentative identification by assigning structures to fragments. However, 358 359 it should be noted that more definitive identifications with these techniques are more difficult. For example, there may be isobars or isomers with similar MS/MS spectra so the actual 360 identification is tentative. Beyond this, very few volatile aroma glycoside standards are 361 362 commercially available, and as such they must be synthesized in order to identify compounds using a standard, as was done for the guaiacol glucoside (Hayasaka et al. 2010b). In addition, 363 while more compound specific MS/MS fragmentation data is being included in MS spectral 364 databases, limited MS/MS data is available for volatile aroma glycosides. 365

To summarize, the choice of a method for analysis of aroma glycosides should be based on the experimental objectives of the researcher. Ideally, research into precursors of volatile aroma compounds should be done using a method that analyzes the intact glycoside. While new technology may improve our ability to analyze these compounds, with the use of HPLC-MS/MS for example, these new methods may be hindered by limited availability of authentic standards and limited MS/MS database entries.

372

Glycoside Studies in Wine

Glycosides are a major source of untapped flavor in wine. While the glycosides often
have a bitter taste, they do not contribute to bitterness in wine (Noble et al. 1987, 1988).
However, upon hydrolysis, the released volatile aroma compounds may affect the aroma profile
of a wine, as previously suggested (Wilson et al. 1986, 1984, Günata et al. 1985) and shown
(Francis et al. 1999). Despite being relatively thermodynamically unstable in the acidic
environment of a wine, most glycosides remain intact throughout the winemaking process and, to

a lesser extent, in the bottle (Zoecklein et al. 1999). Many studies have looked for ways to 379 exploit this flavor reserve during the winemaking process. Studies have been conducted on the 380 381 effect of Saccharomyces strain, other yeasts, malolactic fermentation, skin contact, temperature, and additions of exogenous glycosides as a way to increase glycosidic hydrolysis. In general, 382 383 however, a fundamental lack of understanding is hindering our ability to use flavor compound glycosidic precursors to optimize flavor attributes. In addition, the results of these studies are 384 conflicting which prevent us from drawing definitive conclusions. The cause of these conflicting 385 results stems from a variety of sources. Glycosidic hydrolysis of a single precursor may produce 386 more than one volatile aroma compound whether by enzymatic or acid hydrolysis in wine. In 387 388 addition, some glycosidic precursors will produce odorless products, such as polyols. This 389 underlies the necessity of a global approach for the analysis of glycosides. Both the intact glycosides and the free volatile compounds should be monitored in order to draw conclusions 390 about fermentation effects. Beyond that, sensory studies are required to determine if the 391 392 procedures to increase glycoside hydrolysis make a significant difference on aroma profiles to the final wine. 393

Enzymatic additions. Much of the initial work on enhancing hydrolysis of glycosides during the winemaking process began with studying the addition of enzyme preparations to musts and wines. Endogenous grape enzyme preparations were found to be largely ineffective due to inhibition by sugar and ethanol and by low activity at wine pH (Aryan et al. 1987, Günata et al. 1990). Subsequent studies have looked at the effect on exogenous enzyme preparations. Some of these preparations appear to be more effective than others, with the most successful having arabinosidase, apiosidase, and rhamnosidase activity in addition to glucosidase activity

(Cabaroglu et al. 2003) using a stepwise approach to hydrolyze the disaccharide glycosides 401 (Günata et al. 1993). However, as pointed out by Sarry and Günata (2004), there are two major 402 403 issues to consider with the use of enzyme preparations. The first is formation of off-aromas caused by cinnamate esterase activity of the enzyme preparation. This, in concert with 404 decarboxylation activity from S. cerevisiae during fermentation, can produce off-aromas due to 405 406 production of volatile phenols (Chatonnet et al. 1992, Dugelay et al. 1992). The other potential issue is loss of color from the hydrolysis of anthocyanins to anthocyanidins (Le Traon-Masson 407 408 and Pellerin 1998).

Skin contact and temperature. One study compared the effects of skin contact on free volatile 409 410 compounds, glycosides, and enzymatically released volatile compounds (Palomo et al. 2006). 411 The authors proposed the idea of fermentations done with skin contact and subsequent enzymatic hydrolysis as a way of producing wines with higher concentrations of volatile aroma compounds. 412 Three fermentation treatments done in duplicate on Muscat blanc were carried out at 18°C with 413 414 either no skin contact, 15 hours of skin contact, or 23 hours of skin contact. Released compounds 415 were measured following enzymatic hydrolysis with a commercial enzyme preparation, AR2000, which has activity for all reported glycosides (Baek and Cadwallader 1999). Free and released 416 volatiles were measured by GC-MS. A descriptive analysis of the wines was done according to a 417 418 previous method (Noble et al. 1984). Wines with skin contact showed higher concentrations of glycosides and free compounds in addition to more perceived body as determined by sensory 419 analysis. The authors suggested that the addition of glycosidases together with skin contact 420 421 during winemaking may be a possible way to increase the concentration of free volatiles in wine. 422 However, in this experiment, it is highly likely that the higher concentration of volatile aroma

423 compounds in the wines with skin contact was due not to the increased concentration and subsequently hydrolyzed glycosides but rather to the extraction of more free compounds from 424 425 the skins of the grapes. In addition, glycosides were first extracted and subsequently enzymatically hydrolyzed. Because the enzymatic hydrolysis was done in a buffered solution 426 427 rather than the wine matrix, it is likely that these results would be different if the enzyme was 428 added directly to the wine for the purposes of commercial winemaking. Finally, while phenolic off-aromas were not found in appreciable levels, as noted above, enzyme preparations have been 429 shown to produce high levels of these compounds when in the presence of the wine matrix. It is 430 431 likely these would have been present if the enzymes had been added to the wine directly. 432 Additional studies are necessary to assess whether skin contact in addition to enzymatic 433 hydrolysis during the winemaking process will truly effect glycoside concentration and subsequent hydrolysis and ultimately result in a change in aroma of the resulting wine. 434

Other researchers assessed the effect of prefermentation soak temperature on Cabernet Sauvignon glycoside concentration (McMahon et al. 1999). A cold soak at 10°C for three days was shown to increase glycoside content. An even greater enhancement was seen with an ambient soak at 20°C for three days. It was also shown that glycoside concentration was higher when the must was pressed before fermenting to dryness. However, there was no analysis of the free volatile compounds. As such, the authors could not conclude if these changes in glycoside contact affected the aroma profile of the resulting wines.

442 Strains of *Saccharomyces cerevisiae*. Studies on the effect of *Saccharomyces cerevisiae* strain 443 on glycoside hydrolysis are conflicting. In one study, several strains of *S. cerevisiae* strains were 444 compared for their glycosidase activity (Zoecklein et al. 1997). Strains showed varying ability to

20

PAPERS IN PRES AJEV **AJEV PAPERS IN PRESS** AJEV PAPERS IN PRESS

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

445 hydrolyze glycosides. However, these changes were comparatively small among strains and the 446 authors point out that these differences were likely to have little or no sensory impact because the 447 concentrations of the released compounds were below reported thresholds in wine. Importantly, the authors noted the resulting differences in glycoside levels were difficult to correlate with 448 449 levels of released compounds, since acid-catalyzed rearrangements were indicated as suggested 450 elsewhere (Croteau 1987). Further, correlation of glycoside levels and released aglycones was 451 complicated due to the possibility of absorption and/or metabolism of released compounds by 452 yeast, as also suggested elsewhere (Di Stefano et al. 1992). One study examined the fate of Chardonnay glycosides in both a model matrix and 453 454 fermenting wine (Chassagne et al. 2005). Glycosyl-glucose was tracked throughout fermentation 455 and the glycone moieties themselves were identified and quantified. The authors were able to show that the S. cerevisiae strains tested showed varying glycosidase activity ranging from 18 to 456 457 57% hydrolysis. Glycosides were also extracted from yeast cells, and it was shown that sorption 458 of glycosides to yeast cells was not a significant effect, contrary to the theory proposed by Di

459 Stefano et al. (1992). However, Chassagne et al. (2005) did not include an analysis of the 460 released volatiles, so the fate of the hydrolyzed glycosides is not clear. In addition, there was no 461 sensory component to the study. Therefore, whether or not the hydrolyzed glycosides contributed 462 significantly to a change in aroma could not be determined.

Use of other yeasts. *Saccharomyces* is the preferred wine yeast due to its ethanol tolerance and because it produces few off-aromas (Swiegers et al. 2005). However, early in the winemaking process other yeasts may be present and may influence the aroma of finished wine (Swiegers et al. 2005). Glycosidase activities were compared in several strains of *S. cerevisiae*, several other

wine yeasts, and a non-native wine yeast, Candida molischiana (Fernandez-Gonzalez et al. 467 2003). The study used a model system of yeast cultures coinoculated with glycosides isolated 468 469 from Muscato bianco to compare glycoside content during fermentation and the subsequently released flavor compounds. Among the yeasts tested, Hanseniaspora uvarum and C. molischiana 470 were best able to hydrolyze the glycosides. While *C. molischiana* produced more compounds 471 472 and in higher concentrations than *H. uvarum*, it also produced higher levels of 4-vinylguaiacol and 4-vinylphenol, which are associated with phenolic off-aromas. Further studies to investigate 473 474 whether these results are reproduced in wine are warranted. Malolactic bacteria. In addition to effect of yeast strain on glycoside hydrolysis, many studies 475 476 have been done to assess the possible ability of malolactic bacteria, in particular Oenococcus 477 oeni, to hydrolyze volatile aroma glycosides (Barbagallo et al. 2004, Boido et al. 2002, D'Incecco et al. 2004, Grimaldi et al. 2005). Researchers compared a control fermentation 478 without inoculation to fermentations with O. oeni and found varying decreases in glycoside 479 480 concentration and varying increases in released compounds depending on the strain of O. oeni 481 added (Ugliano et al. 2003). However, the work was done using model wine. Indeed, while other studies corroborate these findings, much of the data indicates that although malolactic bacteria 482 483 show glycosidase activity, they do not significantly contribute to glycoside hydrolysis during 484 wine fermentations, and therefore they are unlikely to contribute significantly to wine aroma via 485 released aroma compounds (Boido et al. 2002).

Although a variety of fermentation parameters have been studied with regard to glycoside content and hydrolysis, our understanding of the reaction mechanisms is incomplete. Model systems may help to elucidate some of the basic mechanisms of glycoside hydrolysis during

489 winemaking, but studies in wine are necessary to understand how much these factors contribute to a change in the aroma composition and sensory profiles of wine. The literature is conflicting 490 with regard to the influence of many of these factors on glycoside hydrolysis, likely because of 491 inherent differences in glycoside content and concentration among cultivars, differing grape 492 maturities at harvest, and potentially the effect of climate on production of glycosides by the 493 494 grape berry, among others. In addition, the various analytical approaches for measuring glycosides may yield different results. The acidic environment of wine, the potential presence of 495 several yeasts, malolactic fermentations, and changes in fermentation conditions will also all 496 497 have some effect on glycoside content and concentration. It is possible these factors have additive or subtractive effects on glycosidic hydrolysis, but these interactive effects have not 498 499 been well studied. Furthermore, all of these effects may be unimportant overall if there is no appreciable sensory impact on the wine. Many previous studies have either not included a 500 sensory component or have shown no sensory impact on the resulting wine despite an increase in 501 502 glycoside hydrolysis. In some cases, the resulting wines had off-aromas. It is likely that this approach of trying to hydrolyze more glycosides during fermentation will only be helpful for 503 some varieties that accumulate high enough concentrations of glycosides. 504

505

Conclusion

506 Our understanding of volatile aroma glycosides has greatly improved since the identification of 507 the first glycosides in 1969. Since then, studies have elucidated more structures and this has 508 given rise to more studies on glycoside formation and the roles of glycosides in the plant. New 509 methods to analyze these compounds have been created and they in turn have improved our 510 ability to study the effects of various winemaking conditions on glycoside content and

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. hydrolysis. Despite this progress in the field, much is still not known. Many structures have still 511 512 yet to be identified. Studies on glycosyltransferases specific to volatile aroma compounds and 513 specifically in Vitis vinifera are needed to improve our understanding on the formation of these potential aroma precursors in grape. In addition, improved analytical techniques are needed to 514 correlate glycoside content and hydrolysis to sensory differences in winemaking studies. 515 Although glycosides represent a large source of potential flavor, we remain largely unable to tap 516 into this flavor reserve to improve grape and wine flavor. 517 **Literature Cited** 518 Anhalt, S., and G. Weissenböck. 1992. Subcellular localization of luteolin glucuronides and 519 520 related enzymes in rye mesophyll. Planta 187:83-88. Aryan, A., B. Wilson, C. Strauss, and P. Williams. 1987. The properties of glycosidases of Vitis 521 *vinifera* and a comparison of their β -glucosidase activity with that of exogenous 522 enzymes. An assessment of possible applications in enology. Am. J. Enol. Vitic. 38:182-523 188. 524 Baek, H., and K. Cadwallader. 1999. Contribution of free and glycosidically bound volatile 525 526 compounds to the aroma of muscadine grape juice. J. Food Sci. 64:441-444. 527 Barbagallo, R.N., G. Spagna, R. Palmeri, and S. Torriani. 2004. Assessment of β-glucosidase 528 activity in selected wild strains of *Oenococcus oeni* for malolactic fermentation. Enzyme Microb. Technol. 34:292-296. 529 Berger, R., and F. Drawert. 1988. Glycosilation of terpenols and aromatic alcohols by cell 530 531 suspension cultures of peppermint (Mentha piperita L.). Z. Naturforsch. 43c:485-490. Boido, E., A. Lloret, K. Medina, F. Carrau, and E. Dellacassa. 2002. Effect of β-glycosidase 532 533 activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J. Agric. Food. Chem. 50:2344-2349. 534 Bowles, D., and E.K. Lim. 2010. Glycosyltransferases of small molecules: Their roles in plant 535 536 biology. eLS doi: 10.1002/9780470015902.a0021537. 537 Bowles, D., E.K. Lim, B. Poppenberger, and F.E. Vaistij. 2006. Glycosyltransferases of 538 lipophilic small molecules. Annu. Rev. Plant Biol. 57:567-597.

Burbulis, I.E., and B. Winkel-Shirley. 1999. Interactions among enzymes of the Arabidopsis 539 540 flavonoid biosynthetic pathway. Proc. Nat. Acad. Sci. 96:12929-12934. Cabaroglu, T., S. Selli, A. Canbas, J.P. Lepoutre, and Z. Günata. 2003. Wine flavor enhancement 541 through the use of exogenous fungal glycosidases. Enzyme Microb. Technol. 33:581-587. 542 Castillo-Muñoz, N., S. Gómez-Alonso, E. García-Romero, and I. Hermosín-Gutiérrez. 2007. 543 544 Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food. Chem. 55:992-1002. 545 Chassagne, D., S. Vernizeau, M. Nedjma, and H. Alexandre. 2005. Hydrolysis and sorption by 546 Saccharomyces cerevisiae strains of Chardonnay grape must glycosides during 547 548 fermentation. Enzyme Microb. Technol. 37:212-217. 549 Chatonnet, P., D. Dubourdieu, J.N. Boidron, and M. Pons. 1992. The origin of ethylphenols in wines. J. Sci. Food Agric. 60:165-178. 550 Cordonnier, R., and C. Bayonove. 1974. Mise en evidence dans la baie de raisin, variete Muscat 551 d'Alexandrie, de monoterpenes lies revelables par une ou plusieurs enzymes du fruit. CR 552 Acad. Sci. Paris 278:3387-3390. 553 Croteau, R. 1987. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87:929-954. 554 Croteau, R., and C. Martinkus. 1979. Metabolism of monoterpenes demonstration of (+)-555 neomenthyl-B-D-glucoside as a major metabolite of (-)-menthone in peppermint (Mentha 556 piperita). Plant Phys. 64:169-175. 557 Dietz, K.J., A. Sauter, K. Wichert, D. Messdaghi, and W. Hartung. 2000. Extracellular β-558 559 glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 51:937-944. 560 D'Incecco, N., E. Bartowsky, S. Kassara, A. Lante, P. Spettoli, and P. Henschke. 2004. Release 561 of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during 562 malolactic fermentation. Food Microbiol. 21:257-265. 563 Di Stefano, R., G. Maggiorotto, and S. Gianotti. 1992. Transformazioni di nerolo e geraniolo 564 indotte dai lieviti. Riv. Vitic. Enol. 42:43-49. 565 Dugelay, I., Z. Günata, S. Bitteur, J. Sapis, R. Baumes, and C. Bayonove. 1992. Formation of 566 567 volatile phenols from cinnamic precursors during wine making: The role of cinnamovl esterase from commercial enzymic preparations. In Progress in Flavour Studies. P. 568 Schreier and P. Winterhalter (eds.), pp. 189-193. Allured Publishing, Carol Stream, IL. 569 Fernandez-Gonzalez, M., R. Di Stefano, and A. Briones. 2003. Hydrolysis and transformation of 570 571 terpene glycosides from Muscat must by different yeast species. Food Microbiol. 20:35-572 41.

- Ferreres, F., R. Figueiredo, S. Bettencourt, I. Carqueijeiro, J. Oliveira, A. Gil-Izquierdo, D.M.
 Pereira, P. Valentão, P.B. Andrade, P. Duarte., A.R. Barceló, and M. Sottomayor. 2011.
 Identification of phenolic compounds in isolated vacuoles of the medicinal plant *Catharanthus roseus* and their interaction with vacuolar class III peroxidase: An H₂O₂
 affair? J. Exp. Bot. 62:2841-2854.
- Figueiredo, A.C., M.J. Almendra, J.G. Barroso, and J.J. Scheffer. 1996. Biotransformation of
 monoterpenes and sesquiterpenes by cell suspension cultures of *Achillea millefolium* L.
 ssp. *millefolium*. Biotechnol. Lett. 18:863-868.
- Francis, I.L., S. Kassara, A.C. Noble, and P.J. Williams. 1999. The contribution of glycoside
 precursors to Cabernet Sauvignon and Merlot aroma. *In* Chemistry of Wine Flavor. ACS
 Symposium Series 714. A.L. Waterhouse and S.E. Ebeler (eds.), pp. 13-30. Am.
 Chemical Society, Washington, DC.
- Francis, M., and C. Allcock. 1969. Geraniol β-D-glucoside: Occurrence and synthesis in rose
 flowers. Phytochemistry 8:1339-1347.
- Gholami, M., Y. Hayasaka, B. Coombe, J. Jackson, S. Robinson, and P. Williams. 1995.
 Biosynthesis of flavour compounds in Muscat Gordo Blanco grape berries. Aust. J. Grape
 Wine Res. 1:19-24.
- Grimaldi, A., E. Bartowsky, and V. Jiranek. 2005. A survey of glycosidase activities of
 commercial wine strains of *Oenococcus oeni*. Int. J. Food Micro. 105:233-244.
- Günata, Y., C. Bayonove, R. Baumes, and R. Cordonnier. 1985. The aroma of grapes I.
 Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chromatogr., A 331:83-90.
- Günata, Y.Z., C.L. Bayonove, C. Tapiero, and R.E. Cordonnier. 1990. Hydrolysis of grape
 monoterpenyl β-D-glucosides by various β-glucosidases. J. Agric. Food. Chem. 38:1232 1236.
- Günata, Z., I. Dugelay, J. Sapis, R. Baumes, and C. Bayonove. 1993. Role of enzymes in the use
 of the flavour potential from grape glycosides in winemaking. *In* Progress in Flavour
 Precursor Studies. P. Schreier and P. Winterhalter (eds.), pp. 219-234. Allured
 Publishing, Carol Stream, IL.
- Hampel, D., A. Robinson, A. Johnson, and S. Ebeler. 2014. Direct hydrolysis and analysis of
 glycosidically-bound aroma compounds in grapes and wines: comparison of hydrolysis
 conditions and sample preparation methods. Aust. J. Grape Wine Res. doi:
 10.1111/ajgw.12087.

Hayasaka, Y., G.A. Baldock, K.H. Pardon, D.W. Jeffery, and M.J. Herderich. 2010a. Investigation into the formation of guaiacol conjugates in berries and leaves of grapevine

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. Vitis vinifera L. cv. Cabernet Sauvignon using stable isotope tracers combined with 608 609 HPLC-MS and MS/MS analysis. J. Agric. Food. Chem. 58:2076-2081. 610 Hayasaka, Y., K.A. Dungey, G.A. Baldock, K. Kennison, and K.L. Wilkinson. 2010b. Identification of a β -D-glucopyranoside precursor to guaiacol in grape juice following 611 grapevine exposure to smoke. Anal. Chim. Acta 660:143-148. 612 Herderich, M., W. Feser, and P. Schreier. 1992. Vomifoliol 9-O-B-D-glucopyranosyl-4-O-B-D-613 614 xylopyranosyl-6-O- β -D-glucopyranoside: A trisaccharide glycoside from apple fruit. Phytochemistry 31:895-897. 615 616 Hösel, W. 1981. Glycosylation and glycosidases. In The Biochemistry of Plants. P.K. Stumpf and E.E. Conn (eds.), pp. 14-17. Academic Press, New York. 617 Ibrahim, R.K. 1992. Immunolocalization of flavonoid conjugates and their enzymes. In Phenolic 618 619 Metabolism in Plants. H.A. Stafford and R.K. Ibrahim (eds.), pp. 25-61. Plenum Press, 620 New York. Iland, P.G., W. Cynkar, I.L. Francis, P. Williams, and B. Coombe. 1996. Optimisation of 621 methods for the determination of total and red-free glycosyl glucose in black grape 622 berries of Vitis vinifera. Aust. J. Grape Wine Res. 2:171-178. 623 Jaillon, O., et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in 624 major angiosperm phyla. Nature 449:463-467. 625 Jones, P., and T. Vogt. 2001. Glycosyltransferases in secondary plant metabolism: Tranquilizers 626 and stimulant controllers. Planta 213:164-174. 627 Kennison, K.R., M.R. Gibberd, A.P. Pollnitz, and K.L. Wilkinson. 2008. Smoke-derived taint in 628 629 wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 56:7379-7383. 630 Kinoshita, T., S. Hirata, Z. Yang, S. Baldermann, E. Kitayama, S. Matsumoto, M. Suzuki, P. 631 Fleischmann, P. Winterhalter, and N. Watanabe. 2010. Formation of damascenone 632 633 derived from glycosidically bound precursors in green tea infusions. Food Chem. 123:601-606. 634

- Koundouras, S., E. Hatzidimitriou, M. Karamolegkou, E. Dimopoulou, S. Kallithraka, J.T.
 Tsialtas, E. Zioziou, N. Nikolaou, and Y. Kotseridis. 2009. Irrigation and rootstock
 effects on the phenolic concentration and aroma potential of *Vitis vinifera* L. cv. Cabernet
 Sauvignon grapes. J. Agric. Food. Chem. 57:7805-7813.
- Le Traon-Masson, M.P., and P. Pellerin. 1998. Purification and characterization of two β-D glucosidases from an *Aspergillus niger* enzyme preparation: Affinity and specificity
 toward glucosylated compounds characteristic of the processing of fruits. Enzyme
 Microb. Technol. 22:374-382.

- Little, J.L. 1999. Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J.
 Chromatogr., A 844:1-22.
- Loscos, N., P. Hernandez-Orte, J. Cacho, and V. Ferreira. 2009. Comparison of the suitability of
 different hydrolytic strategies to predict aroma potential of different grape varieties. J.
 Agric. Food. Chem. 57:2468-2480.
- Lund, S.T., and J. Bohlmann. 2006. The molecular basis for wine grape quality–A volatile
 subject. Science 311:804-805.
- Martinoia, E., E.M.M. Klein, M. Geisler, R. Sánchez-Fernández, and P. Rea. 2000. Vacuolar
 transport of secondary metabolites and xenobiotics. *In* Vacuolar Compartments. Annual
 Plant Reviews. D.G Robinson and J.C. Rogers (eds.), pp. 5:221-53. Sheffield Academic,
 Sheffield, UK.
- Marty, F. 1999. Plant vacuoles. Plant Cell. 11:587-599.
- Mateo, J., and M. Jiménez. 2000. Monoterpenes in grape juice and wines. J. Chromatogr., A
 881:557-567.
- McMahon, H., B.W. Zoecklein, and Y. Jasinski. 1999. The effects of prefermentation maceration
 temperature and percent alcohol (v/v) at press on the concentration of Cabernet
 Sauvignon grape glycosides and glycoside fractions. Am. J. Enol. Vitic. 50:385-390.
- Noble, A.C., R. Arnold, B. Masuda, S. Pecore, J. Schmidt, and P. Stern. 1984. Progress towards
 a standardized system of wine aroma terminology. Am. J. Enol. Vitic. 35:107-109.
- Noble, A., C. Strauss, P. Williams, and B. Wilson. 1987. Sensory evaluation of non-volatile
 flavour precursors in wine. *In* Flavour Science and Technology: Proceedings of the 5th
 Weurman Flavour Research Symposium. M. Martens et al. (eds.), pp. 383-391. Wiley &
 Sons, New York.
- Noble, A., C. Strauss, P. Williams, and B. Wilson. 1988. Contribution of terpene glycosides to
 bitterness in Muscat wines. Am. J. Enol. Vitic. 39:129-131.
- Ono, E., Y. Homma, M. Horikawa, S. Kunikane-Doi, H. Imai, S. Takahashi, Y. Kawai, M.
 Ishiguro, Y. Fukui, and T. Nakayama. 2010. Functional differentiation of the
 glycosyltransferases that contribute to the chemical diversity of bioactive flavonol
 glycosides in grapevines (*Vitis vinifera*). Plant Cell 22:2856-2871.
- Palomo, E.S., M. Pérez-Coello, M. Díaz-Maroto, M. González Viñas, and M. Cabezudo. 2006.
 Contribution of free and glycosidically-bound volatile compounds to the aroma of Muscat "a petit grains" wines and effect of skin contact. Food Chem. 95:279-289.

- Park, S.K., J.C. Morrison, D.O. Adams, and A.C. Noble. 1991. Distribution of free and 675 676 glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J. Agric. Food. Chem. 39:514-518. 677 Pierce, A.E. 1968. Silvlation of organic compounds. Pierce Chemical Co., Rockford, IL. 678 Samuels, A., K. Rensing, C. Douglas, S. Mansfield, D. Dharmawardhana, and B. Ellis. 2002. 679 680 Cellular machinery of wood production: Differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72-82. 681 Sarry, J.E., and Z. Günata. 2004. Plant and microbial glycoside hydrolases: Volatile release from 682 glycosidic aroma precursors. Food Chem. 87:509-521. 683 Sefton, M., G. Skouroumounis, R. Massy-Westropp, and P. Williams. 1989. Norisoprenoids in 684 685 Vitis vinifera white wine grapes and the identification of a precursor of damascenone in these fruits. Aust. J. Chem. 42:2071-2084. 686 687 Sefton, M.A., G.K. Skouroumounis, G.M. Elsey, and D.K. Taylor. 2011. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and 688 beverages. J. Agric. Food. Chem. 59:9717-9746. 689 690 Shoseyov, O., B.A. Bravdo, R. Ikan, and I. Chet. 1988. Endo-β-glucosidase from Aspergillus niger grown on a monoterpene glycoside-containing medium. Phytochemistry 27:1973-691 692 1976. Sikkema, J., J. De Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of 693 hydrocarbons. Microbiol. Rev. 59:201-222. 694 Skouroumounis, G.K., and P. Winterhalter. 1994. Glycosidically bound norisoprenoids from 695 Vitis vinifera cv. Riesling leaves. J. Agric. Food. Chem. 42:1068-1072. 696 Somers, C.T., and M.E. Evans. 1977. Spectral evaluation of young red wines: Anthocyanin 697 698 equilibria, total phenolics, free and molecular SO₂, "chemical age." J. Sci. Food Agric. 28:279-287. 699 Stahl-Biskup, E., F. Intert, J. Holthuijzen, M. Stengele, and G. Schulz. 1993. Glycosidically 700 bound volatiles-A review 1986-1991. Flavour Fragr. J. 8:61-80. 701 702 Swiegers, J.H., E.J. Bartowsky, P. Henschke, and I.S. Pretorius. 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11:139-173. 703 Tikunov, Y.M., R.C. de Vos, A.M.G.I. Paramás, R.D. Hall, and A.G. Bovy. 2010. A role for 704
- Tikunov, Y.M., R.C. de Vos, A.M.G.l. Paramás, R.D. Hall, and A.G. Bovy. 2010. A role for
 differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato
 fruit discovered using a metabolic data fusion approach. Plant Physiol. 152:55-70.

707 Ugliano, M., A. Genovese, and L. Moio. 2003. Hydrolysis of wine aroma precursors during 708 malolactic fermentation with four commercial starter cultures of *Oenococcus oeni*. J. 709 Agric. Food. Chem. 51:5073-5078. Vogt, T., and P. Jones. 2000. Glycosyltransferases in plant natural product synthesis: 710 Characterization of a supergene family. Tr. Plant Sci. 5:380-386. 711 Voirin, S.G., R.L. Baumes, S.M. Bitteur, Z.Y. Günata, and C.L. Bayonove. 1990. Novel 712 monoterpene disaccharide glycosides of Vitis vinifera grapes. J. Agric. Food. Chem. 713 714 38:1373-1378. Wells, R.J. 1999. Recent advances in non-silvlation derivatization techniques for gas 715 716 chromatography. J. Chromatogr., A 843:1-18. 717 Williams, P.J., W. Cynkar, I.L. Francis, J.D. Gray, P.G. Iland, and B.G. Coombe. 1995. Quantification of glycosides in grapes, juices, and wines through a determination of 718 719 glycosyl glucose. J. Agric. Food. Chem. 43:121-128. Williams, P.J., C.R. Strauss, B. Wilson, and R.A. Massy-Westropp. 1982a. Novel monoterpene 720 disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21:2013-721 2020. 722 Williams, P.J., C. Strauss, and B. Wilson. 1982b. Use of C₁₈ reversed-phase liquid 723 chromatography for the isolation of monoterpene glycosides and nor-isoprenoid 724 precursors from grape juice and wines. J. Chromatogr., A 235:471-480. 725 Williams, P.J., C.R. Strauss, B. Wilson, and R.A. Massy-Westropp. 1982c. Studies on the 726 hydrolysis of Vitis vinifera monoterpene precursor compounds and model monoterpene 727 728 β -D-glucosides rationalizing the monoterpene composition of grapes. J. Agric. Food. Chem. 30:1219-1223. 729 Wilson, B., C.R. Strauss, and P.J. Williams. 1984. Changes in free and glycosidically bound 730 monoterpenes in developing Muscat grapes. J. Agric. Food. Chem. 32:919-924. 731 Wilson, B., C.R. Strauss, and P. Williams. 1986. The distribution of free and glycosidically-732 bound monoterpenes among skin, juice, and pulp fractions of some white grape varieties. 733 Am. J. Enol. Vitic. 37:107-111. 734 Wink, M., and M.F. Roberts. 1998. Compartmentation of alkaloid synthesis, transport, and 735 storage. In Alkaloids: Biochemistry, Ecology, and Medicinal Applications. M. Wink and 736 M.F. Roberts (eds.), pp. 239-262. Plenum Press, New York. 737 Winterhalter, P., and G.K. Skouroumounis. 1997. Glycoconjugated aroma compounds: 738 Occurrence, role and biotechnological transformation. In Advances in Biochemical 739 740 Engineering Biotechnology. T. Scheper (ed.), pp. 73-105. Springer, New York.

- Zhao, J., D. Huhman, G. Shadle, X.Z. He, L.W. Sumner, Y. Tang, and R.A. Dixon. 2011.
 MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside
 malonates in *Medicago truncatula*. Plant Cell 23:1536-1555.
- Zoecklein, B.W., L. Douglas, and Y. Jasinski. 2000. Evaluation of the phenol-free glycosyl glucose determination. Am. J. Enol. Vitic. 51:420-423.
- Zoecklein, B., C. Hackney, S. Duncan, and J. Marcy. 1999. Effect of fermentation, aging and
 thermal storage on total glycosides, phenol-free glycosides and volatile compounds of
 White Riesling (*Vitis vinifera* L.) wines. J. Ind. Microbiol. Biotechnol. 22:100-107.
- Zoecklein, B., J. Marcy, J. Williams, and Y. Jasinski. 1997. Effect of native yeasts and selected strains of *Saccharomyces cerevisiae* on glycosyl glucose, potential volatile terpenes, and selected aglycones of white Riesling (*Vitis vinifera* L.) wines. J. Food Comp. Anal. 10:55-65.

753 **75**₿

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

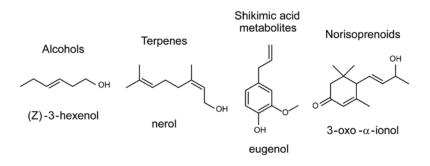
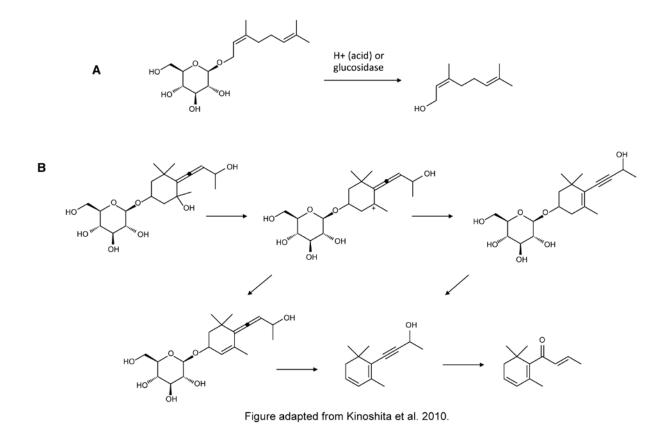
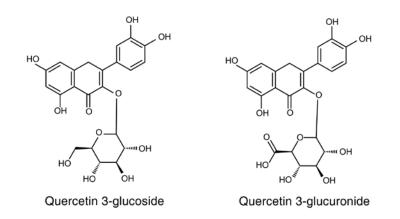
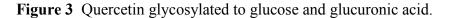
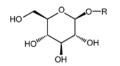
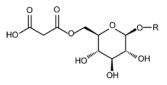


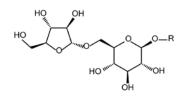
Figure 1 Classes of compounds glycosylated and examples.

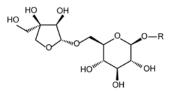




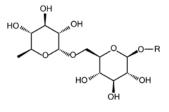

Figure 2 (A) Hydrolysis scheme of neryl- β -D-glucopyranoside to nerol. (B) Proposed formation of β -damascenone from a glycosidic precursor.

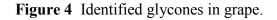
American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104

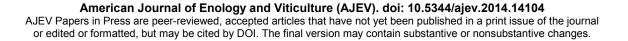

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

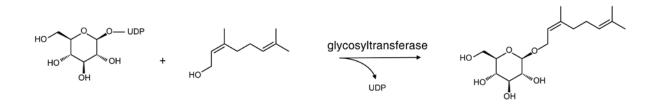



Glucoside β-D-glucopyranoside


Malonylated glucoside 6-O-malonyl-β-D-glucopyranoside


 α -L-arabinofuranosyl- β -D-glucopyranoside




 α -L-apiofuranosyl- β -D-glucopyranoside

Rutinoside α -L-rhamnopyranosyl- β -D-glucopyranoside

Figure 5 Synthesis of neryl-β-D-glucopyranoside from UDP-glucose and nerol.

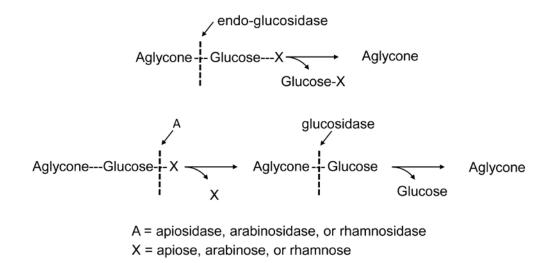
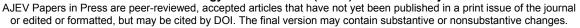



Figure 6 Hydrolysis of disaccharide glycosides.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2014.14104

Figure 7 Guaiacol- β -D-glucoside product ion scan. Adapted from Hayasaka et al. (2010b), with permission.