Supplemental Data for:

Baby T, Collins C, Tyerman SD and Gilliham M. 2016. Salinity negatively affects pollen tube growth and fruit set in grapevines and is not mitigated by silicon. Am J Enol Vitic 67:218-228. doi: 10.5344/ajev.2015.15004.

Supplementary Table 1 Treatment nutrient solutions. ^a										
	Nutrient solution A Control		Nutrient solution B + 1.5 mM K₂SiO₃		Nutrient solution C + 35 mM NaCl		Nutrient solution D + 1.5 mM K2SiO3 + 35 mM NaCl			
lons	Concn	Activity*	Concn	Activity*	Concn	Activity*	Concn	Activity*		
K ⁺	3	2.64	2.98	2.6	3.32	2.67	3.28	2.6		
Ca ²⁺	3.8	1.38	3.9	1.36	4.4	1.3	4.6	1.3		
Mg ²⁺	0.6	0.36	0.6	0.34	0.78	0.32	0.71	0.29		
NH ₄ ⁺	0.5	0.44	0.5	0.44	0.5	0.41	0.5	0.4		
CI ⁻	3.1	2.7	2.2	1.9	39.1	31.5	38.2	30.7		
NO ₃ ⁻	7	6.18	6.8	6	7.6	6.1	7.5	6.1		
SO ₄ ²⁻	0.613	0.3	1.41	0.7	0.799	0.28	1.53	0.55		
H ₂ PO ₄ ⁻	1	0.1	1	0.11	0.92	0.12	1	0.12		
Na ⁺	0.0862	0.076	0.0862	0.075	35.1	28.3	35.1	28.2		
FeEDTA-	0.035	7.95µM	0.035	8.5 µM	0.052	7.6 µM	0.053	7.6 µM		
*Mn ²⁺	0	0	0	0	0	0	0	0		
Zn ²⁺	0.012	3.6 nM	0.012	3.5 nM	0.017	2.6 nM	0.078	2.7 nM		
Cu ²⁺	0.0012	1.1 pM	0.0012	1.1 pM	0.0018	0.98 pM	0.0019	0.98 pM		
В	0.02	20 µM	0.02	20 μΜ	0.02	20 μΜ	0.02	20 µM		
MoO_4^{2-}	0.0001	38 nM	0.0001	39 nM	0.00012	39 nM	0.00012	39 nM		
H_4SiO_4	0	0	1.5	0.096	0	0	1.5	0.096		

^aThe four treatments (nutrient solutions) consisted of **A** (control: modified Hoagland's solution); **B** (modified Hoagland's solution with 1.5 mM K₂SiO₃ added); **C** (modified Hoagland's solution with 35 mM NaCl added); and **D** (modified Hoagland's solution with 35 mM NaCl and 1.5 mM K₂SiO₃ added. The pH of each nutrient solution was adjusted to 5.8 using either 1M NaOH or 1M H₂SO₄ solution. In each treatment solution, the activity of all nutrients except Na⁺, Cl⁻ and Si (H₄SiO₄) was adjusted to be similar to that of the modified half-strength Hoagland's solution as calculated using Visual Minteq, version 2.52. *All values are in mM unless stated otherwise. Preliminary experiments showed that high concentrations of Mn from the growing medium accumulated in leaves. Thus, no additional Mn was included in the nutrient solutions.

	Si treat	ment			
Parameters	– Si	+ Si	P value	LSD (5%)	
Shoot fresh weight (g)	173 a	162 a	0.106	ns	
Root fresh weight (g)	33 a	26 b	0.018	5.8	
Total leaf area (six leaves, mm²)	583 a	583 a	0.968	ns	
Stomatal conductance (mmol H ₂ O/m ² /s)	315 a	228 b	0.042	83.8	
Franspiration rate (mmol H ₂ O/m ² /s)	2.1 a	1.7 b	0.001	0.22	
Net C assimilation rate(µmol CO ₂ /m ² /s)	8.5 a	8.6 a	0.792	ns	
eaf water content (%)	90 a	91 b	0.004	0.2	
Root water content (%)	88 a	88 a	0.525	ns	

^aOne-way ANOVA was performed, and significant differences between treatments were determined at *p* < 0.05. Different letters indicate significant differences between treatments. Values are means of 12 replicates. LSD, least significant difference between treatment means; ns, not significant; + Si, 1.5 mM Si added; – Si, no Si added.