Haggerty JJ, Taylor DK and Jiranek V. 2016.

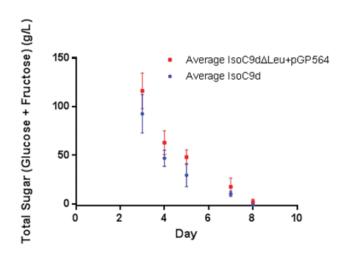
Monitoring volatile aroma compounds during fermentation in a chemically defined grape juice medium deficient in leucine. Am J Enol Vitic 67:350-356. doi: 10.5344/ajev.2016.15026.

Supplemental Table 1 Composition of model media for MS300 (Rossouw and Bauer 2009) and CDGJM (Henschke and Jiranek 1993). (Assimilable nitrogen was calculated as total nitrogen content excluding that from proline.)

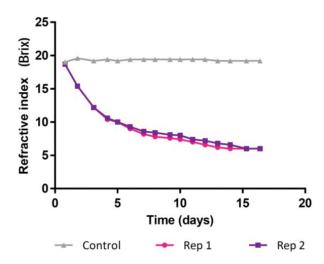
Component	MS300	CDGJM	Component	MS300	CDGJM (mg/L)
pH (NaOH)	3.3	3.23.5	Vitamins	(mg/L)	(mg/L)
			Myoinositol	20	100
Sugars	(g/L)	(g/L)	Nicotinic acid	2	2
Glucose	125	100	Calcium pantothenate	1.5	1
Fructose	125	100	Thiamine HCI	0.25	0.5
			Pyridoxine HCI	0.25	2
Amino acids	(mg/L)	(mg/L)	Biotin	0.003	0.125
Alanine	145.3	100	pAminobenzoic acid		0.2
Arginine	374.4	750	Riboflavin		0.2
Asparagine		150	Folic acid		0.2
Aspartic acid	44.5	350			1
Cysteine	13.1		Mineral salts	(mg/L)	(mg/L)
Glutamic acid	120.4	500	K ₂ SO ₄	500	1
Glutamine	505.3	200	NaCl	200	1
Glycine	18.3	50	MnSO ₄ .H ₂ O	4	1
Histidine	32.7	150	ZnSO ₄	4	1
Isoleucine	32.7	200	CuSO ₄ .5H ₂ O	1	1
Leucine	48.4	300	KI	1	
Lysine	17.0	250	CoCl ₂ .6H ₂ O	0.4	
Methionine	31.4	150	KH ₂ PO ₄	750	1140
Phenylalanine	37.9	150	MgSO ₄ .7H ₂ O	250	1230
Proline	612.6	500	CaCl ₂ .2H ₂ O	155	440
Serine	78.5	400	H ₃ BO ₃	1	0.0057
Threonine	759.3	350	NaMoO ₄ .2H ₂ O	1	0.0242
Tryptophan	179.3	100	Co(NO ₃) ₂ .6H ₂ O		0.0291
Tyrosine	18.3	20	CuCl ₂		0.0136
Valine	44.5	200	FeCl ₂		0.0320
Total amino acids	3113.9	4870	ZnCl ₂		0.1355
Assimilable nitrogen (mg N/L)	419	723	KIO ₃		0.0108
Ammonium chloride	460	100	K tartrate		5000
Total assimilable nitrogen (mg N/L)	537	749	L-Malic acid		3000
			Citric acid		200
			MnCl ₂ .4H ₂ O		0.1982

Haggerty JJ, Taylor DK and Jiranek V. 2016.

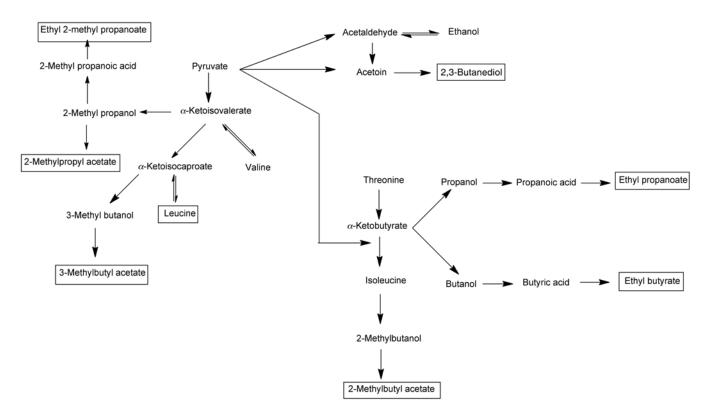
Monitoring volatile aroma compounds during fermentation in a chemically defined grape juice medium deficient in leucine. Am J Enol Vitic 67:350-356. doi: 10.5344/ajev.2016.15026.


Compound	Aroma description	Odor threshold (µg/L)
Ethyl esters		
ethyl acetate	pineapple, fruity, solvent	7500
ethyl 2-methylpropanoate	sweet, rubber	15
ethyl 2-methylbutanoate	apple	18/1
ethyl 3-methylbutanoate	fruit	3
ethyl butanoate	apple	20
ethyl hexanoate	apple peel, fruit	14/5
ethyl octanoate	fruit, fat	2
ethyl decanoate	grape	200
ethyl lactate	fruit	14
ethyl dodecanoate	soapy, estery	-
ethyl propanoate	fruity	1800
Acetates		
3-methylbutyl acetate	banana	30
2methylbutyl acetate	fruit	160
2-phenylethyl acetate	rose, honey, tobacco	250
hexyl acetate	fruit, herb	670
2-methylpropyl acetate	fruit, apple, banana	1.6
Acids		
2-methylpropanoic acid	rancid, butter, cheese	2300
3-methylbutanoic acid	sweat, acid, rancid	33.4
acetic acid	sour	200,000
2-methylbutanoic acid	cheese, sweaty	1500
butanoic acid	rancid, cheese, sweat	173
hexanoic acid	sweat	420
octanoic acid	sweat, cheese	500
decanoic acid	rancid, fat	1000/8100
Alcohols		
benzyl alcohol	sweet, flower	900,000
butanol	wine, fusel, spiritous	150,000
2-methyl propanol	wine, solvent, bitter	40,000
3-methyl butanol	whisky, malt, burnt	30,000
2methyl butanol	wine, onion	65,000
2phenyl ethanol	honey, spice, rose, lilac	14,000/10,000
methionol	sweet potato	1000
<i>n</i> -propanol	alcohol, pungent	306,000
2,3-butanediol	fruity	150,000
hexanol	resin, flower, green	8000
Miscellaneous		
2,3-butanedione	butter	100

Supplemental Table 2	Aroma compounds formed by Saccharomyces cerevisiae with			
odor activity values greater than 1.				


Aroma descriptors are from Flavornet (Acree and Arn 2004); odor thresholds determined in ~10% ethanol (Francis and Newton 2005, Ferreira et al. 2000, Guth 1997, Peinado et al. 2006, Peinado et al. 2004, Salo 1970, Siebert et al. 2005).

Haggerty JJ, Taylor DK and Jiranek V. 2016.


Monitoring volatile aroma compounds during fermentation in a chemically defined grape juice medium deficient in leucine. Am J Enol Vitic 67:350-356. doi: 10.5344/ajev.2016.15026.

Supplemental Figure 1 Fermentation kinetics of strains isoC9D and iso-C9D Δ LEU+pGP564 grown in CDGJM lacking leucine. Fermentations were conducted in deep-well (~2 mL) plates and are reported as averages for each time point (n = 40).

Supplemental Figure 2 Fermentation curve for replicate 1, replicate 2 of strain iso-C9D∆LEU+pGP564, and the uninoculated control, as measured by refractometry in Brix.

Supplemental Figure 3 A simplified version of the pathways involved in the production of the aroma compounds linked to leucine biosynthesis (Baichwal et al. 1983, Bollon 1974, González et al. 2000, Guymon et al. 1961, Hazelwood et al. 2008, Ingraham et al. 1961).

Haggerty JJ, Taylor DK and Jiranek V. 2016.

Monitoring volatile aroma compounds during fermentation in a chemically defined grape juice medium deficient in leucine. Am J Enol Vitic 67:350-356. doi: 10.5344/ajev.2016.15026.

References for Supplemental Material

Acree T and Arn H. 2004. Flavornet. www.flavornet.org.

- Baichwal VR, Cunningham TS, Gatzek PR and Kohlhaw GB. 1983. Leucine biosynthesis in yeast: Identification of two genes (LEU4, LEU5) that affect α -Isopropylmalate synthase activity and evidence that LEU1 and LEU2 gene expression is controlled by α -Isopropylmalate and the product of a regulatory gene. Curr Genet 7:369-377.
- Bollon AP. 1974. Fine structure analysis of a eukaryotic multifunctional gene. Nature 250:630-634.
- Ferreira V, López R and Cacho JF. 2000. Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659-1667.
- Francis IL and Newton JL. 2005. Determining wine aroma from compositional data. Aust J Grape Wine Res 11:114-126.
- González E, Fernández MR, Larroy C, Solà L, Pericàs MA, Parés X and Biosca JA. 2000. Characterization of a (2*R*,3*R*)-2,3-butanediol dehydrogenase as the *Saccharomyces cerevisiae* YAL060W gene product. Disruption and induction of the gene. J Biol Chem 275:35876-35885.
- Guth H. 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45:3027-3032.
- Guymon JF, Ingraham JL and Crowell EA. 1961. The formation of *n*-propyl alcohol by *Saccharomyces cerevisiae*. Arch Biochem Biophys 95:163-168.
- Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT and Dickinson JR. 2008. The Ehrlich pathway for fusel alcohol production: A century of research on *Saccharomyces cerevisiae* metabolism. Appl Environ Microbiol 74:2259-2266.
- Henschke PA and Jiranek V. 1993. Yeasts-metabolism of nitrogen compounds. *In* Wine Microbiology and Biotechnology. GH Fleet (ed.), pp. 77-163. Harwood Academic Publishers GmbH, Cornwall.
- Ingraham JL, Guymon JF and Crowell EA. 1961. The pathway of formation of *n*-butyl and *n*-amyl alcohols by a mutant strain of *Sac*charomyces cerevisiae. Arch Biochem Biophys 95:169-175.
- Peinado RA, Moreno J, Bueno JE, Moreno JA and Mauricio JC. 2004. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem 84:585-590.
- Peinado RA, Mauricio JC and Moreno J. 2006. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by *Saccharomyces cerevisiae* var. *capensis*. Food Chem 94:232-239.
- Rossouw D and Bauer FF. 2009. Comparing the transcriptomes of wine yeast strains: Toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 84:937-954.
- Salo P. 1970. Determining the odor thresholds for some compounds in alcoholic beverages. J Food Sci 35:95-99.
- Siebert TE, Smyth HE, Capone DL, Neuwöhner C, Pardon KH, Skouroumounis GK, Herderich MJ, Sefton MA and Pollnitz AP. 2005. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal Bioanal Chem 381:937-947.