Skip to main content
Log in

Functional analysis of a complex oncogene arrangement in biotype III Agrobacterium tumefaciens strains

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The ubiquitous grapevine-associated octopine/cucumopine Ti plasmids of biotype III Agrobacterium tumefaciens strains carry two T regions, TA and TB, with a complex oncogene arrangement. Within the octopine/cucumopine group, two main strain types were identified: ‘large TA’ strains with a TA region resembling the TL region of the biotype I octopine strain Ach5 and ‘small TA’ strains with a similar T region organization as the ‘large TA’ strains but with a large internal TA deletion. Structural and functional studies of the representative ‘large TA’ strain Tm4 revealed six oncogenes. Each oncogene was inserted in a disarmed vector and tested for biological activity using the corresponding oncogenes of Ach5 as standards. Five Tm4 oncogenes, TA-iaaM, T-ipt, T-6b, TB-iaaH and TB-iaaM, were shown to be active, the IS-interrupted TA-iaaH gene was inactive. To study the role of each gene in the pTiTm4 context, several single and multiple pTiTm4 mutations were constructed. It was shown that whereas TA-iaaM and TB-iaaH are essential for tumour formation on grapevine, T-ipt, T-6b and TB-iaaM are not. The avirulence of the TA-iaaM -mutant was shown to be due to an inhibitory effect of the T-ipt gene, since a TA-iaaM -/T-ipt -double mutant was fully virulent. We conclude that the TA-iaaM gene of ‘large TA’ strains is specifically required to counteract the tumour growth inhibiting activity of the T-ipt gene. Both TA-iaaM and T-ipt are absent from the ‘small TA’ strains. A model on the roles and interactions of the different oncogenes in ‘large TA’ and ‘small TA’ strains is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiyoshi D, Klee H, Amasino R, Nester EW, Gordon MP. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998 (1984).

    PubMed  Google Scholar 

  2. Barker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2: 335–350 (1983).

    Google Scholar 

  3. Barry GF, Rogers SG, Fraley RT, Brand L: Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81: 4776–4780 (1984).

    Google Scholar 

  4. Bonnard G, Tinland B, Paulus F, Szegedi E, Otten L: Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene from a wide host range biotype III Agrobacterium strain. Mol Gen Genet 216: 428–438 (1989).

    Article  PubMed  Google Scholar 

  5. Bonnard G, Vincent F, Otten L: Sequence and distribution of IS866, a novel T-region-associated insertion sequence from Agrobacterium tumefaciens. Plasmid, in press (1989).

  6. Buchholtz WB, Thomashow MF: Comparison of T-DNA oncogene complements of Agrobacterium tumefaciens tumor-inducing plasmids with limited and wide host ranges. J Bact 160: 319–326 (1984).

    PubMed  Google Scholar 

  7. Buchholtz WB, Thomashow MF: Host range encoded by the Agrobacterium tumefaciens tumor-inducing plasmid can be expanded by modification of its T-DNA oncogene complement. J Bact 160: 327–332 (1984).

    PubMed  Google Scholar 

  8. Buchmann I, Marner FJ, Schröder G, Waffenschmidt S, Schröder J: Tumour genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853–859 (1985).

    Google Scholar 

  9. Burr TJ, Katz BH: Isolation of Agrobacterium tumefaciens biovar 3 from grapevine galls and sap and from vineyard soil. Phytopathology 73: 163–165 (1983).

    Google Scholar 

  10. Burr TJ, Katz BH, Bishop AL: Populations of Agrobacterium in vineyard and nonvineyard soils and grape roots in vineyards and nurseries. Plant Dis 71: 617–620 (1987).

    Google Scholar 

  11. DeBruyn FJ, Lupski JR: The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids. A review. Gene 27: 131–149 (1984).

    Article  PubMed  Google Scholar 

  12. Depicker A, vanMontagu M, Schell J: Homologous DNA sequences in different Ti-plasmids are essential for oncogenicity. Nature 275: 150–153 (1978).

    Google Scholar 

  13. Depicker A, deWilde M, deVos R, vanMontagu M, Schell J: Molecular cloning of overlapping segments of the nopaline Ti plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3: 193–211 (1980).

    PubMed  Google Scholar 

  14. DeVos G, DeBeuckeleer M, vanMontagu M, Schell J: Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens. Plasmid 6: 249–253 (1981).

    PubMed  Google Scholar 

  15. Dhaese P, DeGreve H, Decraemer H, Schell J, vanMontagu M: Rapid mapping of transposon insertion and deletion mutations in the lage Ti-plasmids of Agrobacterium tumefaciens. Nucleic Acids Res 7: 1837–1849 (1979).

    PubMed  Google Scholar 

  16. Follin A, Inze D, Budar F, Genetello C, vanMontagu M, Schell J: Genetic evidence that the tryptophan 2-mono-oxygenase gene of Pseudomonas savastanoi is functionally equivalent to one of the T-DNA genes involved in plant tumour formation by Agrobacterium tumefaciens. Mol Gen Genet 201: 178–185 (1985).

    Google Scholar 

  17. Gielen J, DeBeuckeleer M, Seurinck J, Deboeck F, DeGreve H, Lemmers M, vanMontagu M, Schell J: The complete nucleotide sequence of the TL DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3: 835–846 (1984).

    PubMed  Google Scholar 

  18. Hoekema A, dePater BS, Fellinger AJ, Hooykaas PJJ, Schilperoort RA: The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range. EMBO J 3: 3043–3047 (1984).

    Google Scholar 

  19. Hooykaas PJJ, Schilperoort RA: The molecular genetics of crown gall tumorigenesis. Adv Genet 22: 209–283 (1984).

    Google Scholar 

  20. Hooykaas PJJ, denDulk-Ras H, Schilperoort RA: The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11: 791–794 (1988).

    Google Scholar 

  21. Huss B, Bonnard G, Otten L: Isolation and functional analysis of a set of auxin genes with low root-inducing activity from an Agrobacterium tumefaciens biotype III strain. Plant Mol Biol 12: 271–283 (1989).

    Google Scholar 

  22. Inzé D, Follin A, vanLijsebettens M, Simoens C, Genetello C, vanMontagu M, Schell J: Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194: 265–274 (1984).

    Google Scholar 

  23. Inzé D, Follin A, VanOnckelen H, Rüdelsheim P, Schell J, vanMontagu M: Functional oncogenes of the T-DNA onc genes. In: Fox JE, Jacobs M (eds) Molecular Biology of Plant Growth Control, pp. 181–196. UCLA Symp Mol Biol, vol 44. Alan R. Liss, New York (1987).

    Google Scholar 

  24. Leemans J, Shaw C, Deblaere RJ, DeGreve H, Hernalsteens JP, Maes M, vanMontagu M, Schell J: Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. Plasmid 6: 249–253 (1981).

    PubMed  Google Scholar 

  25. Leemans J, Hernalsteens JP, Deblaere R, DeGreve H, Thia-Toong L, vanMontagu M, Schell J: Genetic analysis of T-DNA and regeneration of transformed plants. In: Pühler A (ed) Molecular Genetics of the Bacteria-Plant Interaction, pp. 322–330. Springer, Berlin (1983).

    Google Scholar 

  26. Loubser JT: Identification of Agrobacterium tumefaciens biotype 3 on grapevine in South Africa. Plant Dis Rep 62: 730–731 (1978).

    Google Scholar 

  27. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab., Cold Spring Harbor, NY (1982).

    Google Scholar 

  28. Morris RO: Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Ann Rev Plant Physiol 37: 509–538 (1986).

    Google Scholar 

  29. Murray NE, Brammer WJ, Murray K: Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150: 53–60 (1977).

    PubMed  Google Scholar 

  30. Murashige T, Skoog S: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  31. Nester EW, Gordon MP, Amasino RM, Yanofsky MF: Crown gall: a molecular and physiological analysis. Ann Rev Plant Physiol 35: 387–413 (1984).

    Google Scholar 

  32. Offringa I, Melchers L, Regensburg-Tuink A, Costantino P, Schilperoort R, Hooykaas P: Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the TR-region of the Ri plasmid of Agrobacterium rhizogenes. Proc Natl Acad Sci USA 83: 6935–6939 (1986).

    Google Scholar 

  33. Ooms G, Hooykaas PJ, Molenaar G, Schilperoort RA: Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti-plasmids: analysis of T-DNA functions. Gene 14: 33–50 (1981).

    Article  PubMed  Google Scholar 

  34. Paulus F, Huss B, Bonnard G, Ridé M, Szegedi E, Tempé J, Petit A, Otten L: Molecular systematics of biotype III Ti plasmids of Agrobacterium tumefaciens. Mol Plant Microbe Int 2: 64–74 (1989).

    Google Scholar 

  35. Paulus F, Ridé M, Otten L: Distribution of two Agrobacterium tumefaciens insertion elements in natural isolates: evidence for stable association between Ti plasmids and their bacterial hosts. Mol Gen Genet, in press.

  36. Perry KL, Kado CI: Characteristics of Ti-plasmids from broad-host range and ecologically specific biotype 2 and 3 strains of Agrobacterium tumefaciens. J Bact 151: 343–350 (1982).

    PubMed  Google Scholar 

  37. Prentki P, Karch F, Iida S, Meyer J: The plasmid cloning vector pBR325 contains a 482 base pair long inverted duplication. Gene 14: 289–299 (1981).

    Article  PubMed  Google Scholar 

  38. Rao RN, Rogers SG: Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7: 79–82 (1979).

    Article  PubMed  Google Scholar 

  39. Ream LW, Gordon MP, Nester EW: Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid A6. Proc Natl Acad Sci USA 80: 1660–1664 (1983).

    PubMed  Google Scholar 

  40. Schröder G, Waffenschmidt S, Weiler EW, Schröder J: The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391 (1984).

    PubMed  Google Scholar 

  41. Süle S: Biotypes of Agrobacterium tumefaciens in Hungary. J Appl Bact 44: 207–213 (1978).

    Google Scholar 

  42. Szegedi E: Host range and specific L(+) tartrate utilization of biotype 3 of Agrobacterium tumefaciens. Acta Phytopath Acad Scient Hung 20: 17–22 (1985).

    Google Scholar 

  43. Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW: Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283: 794–796 (1980).

    Google Scholar 

  44. Thomashow MF, Knauf VC, Nester EW: Relationship between the limited and wide host range octopine-type Ti plasmids of Agrobacterium tumefaciens. J Bact 146: 484–493 (1981).

    PubMed  Google Scholar 

  45. Thomashow LS, Reeves S, Thomashow MF: Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 8: 5071–5075 (1984).

    Google Scholar 

  46. Thomashow MF, Hugly S, Buchholz WG, Thomashow LS: Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231: 616–618 (1986).

    PubMed  Google Scholar 

  47. Tinland B, Huss B, Paulus F, Bonnard G, Otten L: Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet, in press.

  48. VanHaute E, Joos H, Maes M, Warren G, vanMontagu M, Schell J: Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–417 (1983).

    PubMed  Google Scholar 

  49. VanOnckelen H, Prinsen E, Inzé D, Rüdelsheim P, vanLijsebettens M, Follin A, Schell J, vanMontagu M, DeGreef J: Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198: 357–360 (1986).

    Article  Google Scholar 

  50. Yanofsky M, Montoya A, Knauf V, Lowe B, Gordon M, Nester E: Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analysis of transferred DNA. J Bact 163: 341–348 (1985).

    PubMed  Google Scholar 

  51. Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon, Nester E: Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201: 237–246 (1985).

    Google Scholar 

  52. Zambryski P, Joos H, Genetello C, Leemans J, vanMontagu M, Schell J: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, B., Tinland, B., Paulus, F. et al. Functional analysis of a complex oncogene arrangement in biotype III Agrobacterium tumefaciens strains. Plant Mol Biol 14, 173–186 (1990). https://doi.org/10.1007/BF00018558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018558

Key words

Navigation