Skip to main content
Log in

High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Ma gene for root-knot nematode (RKN) resistance from Myrobalan plum (Prunus cerasifera L.) confers a complete-spectrum and a heat-stable resistance to Meloidogyne spp., conversely to Mi-1 from tomato, which has a more restricted spectrum and a reduced efficiency at high temperature. This gene was identified from a perennial self-incompatible near-wild rootstock species and lies in cosegregation with the SCAR marker SCAFLP2 on the Prunus linkage group 7 in a 2.3 cM interval between the SCAR SCAL19 and SSR pchgms6 markers. We initiated a map-based cloning of Ma and report here the strategy that rapidly led to fine mapping and direct chromosome landing at the locus. Three pairs of bulks, totaling 90 individuals from half-sibling progenies derived from the Ma-heterozygous resistant accession P.2175, were constructed using mapping data, and saturation of the Ma region was performed by bulked segregant analysis (BSA) of 320 AFLP primer pair combinations. The closest three AFLP markers were transformed into codominant SCARs or CAPS designated SCAFLP3, SCAFLP4 and SCAFLP5. By completing the mapping population up to 1,332 offspring from P.2175, Ma and SCAFLP2 were mapped in a 0.8 cM interval between SCAFLP3 and SCAFLP4. A large-insert bacterial artificial chromosome (BAC) DNA library of P.2175, totaling 30,720 clones with a mean insert size of 145 kb and a 14–15× Prunus haploid genome coverage was constructed and used to land on the Ma spanning interval with few BAC clones. As P.2175 is heterozygous for the gene, we constructed the resistant and susceptible physical contigs by PCR screening of the library with codominant markers. Additional microsatellite markers were then designed from BAC subcloning or BAC end sequencing. In the resistant contig, a single 280 kb BAC clone was shown to carry the Ma gene; this BAC contains two flanking markers on each side of the gene as well as two cosegregating markers. These results should allow future cloning of the Ma gene in this perennial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5a–c

Similar content being viewed by others

References

  • Ammiraju S, Veremis C, Huang X, Roberts A, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicum peruvianum is on the short arm of the chromosome 6. Theor Appl Genet 106:478–484

    CAS  PubMed  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2002) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:221–223

    Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J (in press)

    Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Poizat C, Dirlewanger E, Kleinhentz M, Lafargue B, Laigret F, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  CAS  PubMed  Google Scholar 

  • Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic, New York, pp 179–231

    Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.) Theor Appl Genet 103:592–600

    CAS  Google Scholar 

  • Dropkin VH (1969) The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637

    Google Scholar 

  • Esmenjaud D, Scotto La Massese C, Salesses G, Minot JC, Voisin R (1992) Method and criteria to evaluate resistance to Meloidogyne arenaria in Prunus cerasifera Ehr. Fund Appl Nematol 15:385–389

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Salesses G, Poupet R, Onesto JP (1993) Assessment of a method using plantlets grown from in vitro for studying resistance of Prunus cerasifera Ehr. (Myrobalan plum) to Meloidogyne spp. Nematropica 23:41–48

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter- and intraspecific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hortic Sci 119:94–100

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Salesses G, Bonnet A (1995) Effect of cutting age on the resistance of Prunus cerasifera (Myrobalan plum) to Meloidogyne arenaria. J Nematol 27:634–638

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R (1996a) Effect of durable inoculum pressure and high temperature on root-galling, nematode numbers and survival of Myrobalan plum genotypes (Prunus cerasifera) highly resistant to Meloidogyne spp. Fund Appl Nematol 19:85–90

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996b) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Genet 92:873–879

    Article  Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Simard MH, Salesses G (1997) Differential response to root-knot nematodes in Prunus species and correlative genetic implications. J Nematol 29:370–380

    Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogeae. Genome 39:836–845

    CAS  PubMed  Google Scholar 

  • Handoo ZA, Nyczepir AP, Esmenjaud D, van der Beck JG, Castagnone-Sereno P, Carta LK, Skantar AM, Higgins JA (2004) Morphological, molecular and differential-host characterization of Meloidogyne floridensis n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing peach in Florida. J Nematol 36:20–35

    CAS  Google Scholar 

  • Holtzmann OV (1965) Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55:990–992

    Google Scholar 

  • Hwang CF, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J 34:585–593

    Article  CAS  PubMed  Google Scholar 

  • Hwang CF, Bhakta AV, Truesdell GM, Puldo WM, Williamson VM (2000) Evidence for a role of the N-terminus and leucine-rich repeat region of the Mi gene product in regulation of localised cell death. Plant Cell 12:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Joobeur T, Viruel MA, De Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Troco MJ, Messeguer R, Battle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Kaloshian I, Williamson VM, Miyao G, Lawn DA, Westerdahl BB (1996) “Resistance-breaking” nematodes identified in California tomatoes. Calif Agric 50:18–19

    Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  CAS  PubMed  Google Scholar 

  • Lamberti F (1979) Economic importance of Meloidogyne spp. in subtropical and Mediterranean climates. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne spp.): systematics, biology and control. Academic, New York, pp 342–357

    Google Scholar 

  • Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 85:1325–2334

    Article  Google Scholar 

  • Lecouls AC, Rubio-Cabetas MJ, Minot JC, Voisin R, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (1999) RAPD and SCAR markers linked to the Ma1 root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet 99:328–336

    Article  Google Scholar 

  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (2004) Marker-assisted selection for the wide-spectrum resistance to root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breed 13:113–124

    CAS  Google Scholar 

  • Lu ZX, Sossey-Alaoui K, Reighard GL, Baird WV, Abbott AG (1999) Development and characterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstock breeding. Theor Appl Genet 99:115–123

    Article  CAS  Google Scholar 

  • Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW (2000) Inheritance of resistance to root-knot nematodes in Prunus rootstocks. HortScience 35:1344–1346

    Google Scholar 

  • Martinez de Llarduya O, Moore AE, Kaloshian I (2001) The tomato Rme-1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. Plant J 27:417–425

    Article  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Milligan S, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Int 16:645–649

    CAS  Google Scholar 

  • Roberts PA (1992) Current status of the availability, development, and use of host plant-resistance to nematodes. J Nematol 24:213–227

    Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematode related host plant species. Annu Rev Phytopathol 33:199–221

    Article  CAS  Google Scholar 

  • Roberts PA, Dalmasso A, Cap GB, Castagnone-Sereno P (1990) Resistance in Lycopersicum peruvianum to isolates of Mi gene-compatible Meloidogyne populations. J Nematol 22:585–589

    Google Scholar 

  • Rosen S, Skaletsky HJ (1998) Primer3. Code available at http://www.genome.wi.mit.edu/genome_software/other/primer3.html

  • Rossi M, Goggin F, Milligan SB, Kaloshian I, Ullman D, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Google Scholar 

  • Rubio-Cabetas MJ, Lecouls AC, Salesses G, Bonnet A, Minot JC, Voisin R, Esmenjaud D (1998) Evidence of a new gene for high resistance to Meloidogyne spp. in Myrobalan plum (Prunus cerasifera). Plant Breed 117:567–571

    Google Scholar 

  • Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, Bonnet A (1999) Response of the Ma genes from Myrobalan plum to Meloidogyne hapla and M. mayaguensis. HortScience 34:1266–1268

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-lengh polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 88:8014–8018

    Google Scholar 

  • Salesses G, Grasselly C, Renaud R, Claverie J (1993) Les porte-greffe des espèces fruitières à noyau du genre Prunus. In: Gallais A, Bannerot H (eds) Amélioration des espèces cultivées. INRA Editions, Paris, pp 605–619

    Google Scholar 

  • Salesses G, Grasselly C, Bernhard R (1994) Utilisation des espèces indigènes et exotiques pour l’amélioration des Prunus cultivés, variétés et porte-greffe. C R Acad Agric Fr 80:77–88

    Google Scholar 

  • Sasser JN (1977) Worldwide dissemination and importance of the root-knot nematodes Meloidogyne spp. J Nematol 22:585–589

    Google Scholar 

  • Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen JC (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  CAS  PubMed  Google Scholar 

  • Voisin R, Minot JC, Esmenjaud D (1999) Penetration, development and emigration of juveniles of the nematode Meloidogyne arenaria in Myrobalan plum (Prunus cerasifera) clones bearing the Ma resistance genes. Eur J Plant Pathol 105:103–108

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293

    Google Scholar 

  • Yaghoobi I, Kaloshian I, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464

    CAS  Google Scholar 

  • Yamamoto T, Hayashi T (2002) New root-knot nematode resistance genes and their STS markers in peach. Sci Hortic 96:81–90

    Article  CAS  Google Scholar 

  • Young WP, Schupp JM, Kleim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Commission of the European Union via the FAIR Programme of Research and Technological Development (Research project no. FAIR6-CT 984139; 1999–2003). The authors also thank the technical staff of the INRA Exprimental Farms ‘Domaine des Jarres’, ‘Domaine de Toulenne’ and ‘Domaine de la Grande Ferrade’ for producing the Myrobalan plum intra- and interspecific segregating material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Esmenjaud.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claverie, M., Dirlewanger, E., Cosson, P. et al. High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109, 1318–1327 (2004). https://doi.org/10.1007/s00122-004-1749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1749-y

Keywords

Navigation