Skip to main content
Log in

Genomic analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The complete sequence of the first retrotransposon isolated in Vitis vinifera, Gret1, was used to design primers that permitted its analysis in the genome of grapevine cultivars. This retroelement was found to be dispersed throughout the genome with sites of repeated insertions. Fluorescent in situ hybridization indicated multiple Gret1 loci distributed throughout euchromatic portions of chromosomes. REMAP and IRAP proved to be useful as molecular markers in grapevine. Both of these techniques showed polymorphisms between cultivars but not between clones of the same cultivar, indicating differences in Gret1 distribution between cultivars. The combined cytological and molecular results suggest that Gret1 may have a role in gene regulation and in explaining the enormous phenotypic variability that exists between cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C E Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosome Res 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of Citrus clementina Hort ex Tan, a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  PubMed  CAS  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philo Trans R Soc of Lond B Biol Sci 312:227–242

    Article  CAS  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin and distribution of retrotransposons (gypsy and copia) in Conifers. Mol Biol Evol 18:1176–1188

    PubMed  CAS  Google Scholar 

  • Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y (2001) Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol 42:189–196

    Article  PubMed  CAS  Google Scholar 

  • Haas HU, Alleweldt G (2000) The Karyotype of grapvine (Vitis vinifera L). Acta Hort (ISHS) 528:249–258

    Google Scholar 

  • Hodgetts R (2004) Eukaryotic gene regulation by targeted chromatin re-modelling at dispersed, middle-repetitive sequence elements. Curr Opin Genet Dev 14:680–685

    Article  PubMed  CAS  Google Scholar 

  • Jianxin MA, Katrien MD, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  Google Scholar 

  • Jones GH, Heslop-Harrison JS (2000) Arabidopsis, a practical approach. Wilson ZA (ed) Oxford University Press, Oxford, pp 105–124

  • Kalendar R, Crob T, Regina M (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kazazian Jr HH (2004) Mobile elements: Drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:87–134

    Article  PubMed  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–34

    Article  PubMed  CAS  Google Scholar 

  • Martins A, Carneiro LC, Gonçalves E, Magalhães N (2002) O que a Selecção das Castas Pode dar (e dá) aos Viticultores. Vititecnica 1:16–18

    Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinzuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for the insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1711–1780

    Article  Google Scholar 

  • Pinto-Carnide O, Martín JP, Leal F, Castro I, Guedes-Pinto H, Ortiz J M (2003) Characterization of grapevine (Vitis vinifera L) cultivars from northern Portugal using RAPD and microsatellite markers. Vitis 42:23–26

    CAS  Google Scholar 

  • Sandhu D, Kulvinder SG (2002) Gene containing regions of wheat and other grass genomes. Plant Physiol 128:803–811

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Alferez S, SanMiguel P, Jin YK, Springer PS, Bennetzen JL (2003) Structure and evolution of the Cinful retrotransposon family of maize. Genome 46:745–752

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis TH (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    PubMed  CAS  Google Scholar 

  • Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibanez J, Pejic I, Wagner HW, Glossl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505

    Article  Google Scholar 

  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    CAS  Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Ablett ER, Henry RJ, Lee LS, Holton TA, Waters D, Wing RA (2001) Grape (Vitis vinifera L) BAC library construction, preliminary STS analysis, and identification of clones associated with flavonoid and stilbene biosynthesis. Am J Enol Vitic 52:287–291

    CAS  Google Scholar 

  • Verriès C, Bès C, This P, Tesnière C (2000) Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L, and other Vitis species. Genome 43:366–376

    Article  PubMed  Google Scholar 

  • Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harisson JS (2002) LINE and gypsy-like retrotransposons in Hordeum species. Plant Mol Biol 49:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Choo AKH (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Antero Martins and Elsa Gonçalves for providing plant material. We would also like to thank Alexandra Castilho for helpful discussion. H. Sofia Pereira is funded by a postdoctoral fellowship (SFRH/BPD/14549/2003) from Fundação de Ciências e Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sofia Pereira.

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, H.S., Barão, A., Delgado, M. et al. Genomic analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera . Theor Appl Genet 111, 871–878 (2005). https://doi.org/10.1007/s00122-005-0009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0009-0

Keywords

Navigation