Skip to main content
Log in

TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Retrotransposon markers have been demonstrated to be powerful tools for investigating linkage, evolution and genetics diversity in plants. In the present study, we identified and cloned three full-size TRIM (terminal-repeat retrotransposon in miniature) group retrotransposon elements from apple (Malus domestica) cv. ‘Antonovka’, the first from the Rosaceae. To investigate their utility as markers, we designed primers to match the long terminal repeats (LTRs) of the apple TRIM sequences. We found that PCR reactions with even a single primer produced multiple bands, suggesting that the copy number of these TRIM elements is relatively high, and that they may be locally clustered or nested in the genome. Furthermore, the apple TRIM primers employed in IRAP (inter-retrotransposon amplified polymorphism) or REMAP (retrotransposon-microsatellite amplified polymorphism) analyses produced unique, reproducible profiles for 12 standard apple cultivars. On the other hand, all seven of the sport mutations in this study were identical to their mother cultivar. Genetic similarity values calculated from the IRAP/REMAP analyses or the STMS (sequence tagged microsatellite sites) analysis were generally comparable. PAUP cluster analysis based on IRAP and REMAP markers in apple and Japanese quince generated an NJ tree that is in good accordance with both a tree based on SMTS markers and the origin of the studied samples. Our results demonstrate that, although they do not encode the proteins necessary to carry out a life cycle and are thereby non-autonomous, TRIMs are at least as polymorphic in their insertion patterns as conventional complete retrotransposons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernet G, Mestre P, Pina J, Asins M (2004) Molecular discrimination of lemon cultivars. HortScience 39:165–169

    CAS  Google Scholar 

  • Bretó M, Ruiz C, Pina J, Asins M (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • Garkava-Gustavsson L, Nybom H (2003) DNA-analyser avslöjar våra åppelsorter. FAKTA Trädgård-Fritid (SLU) 94:1–4

    Google Scholar 

  • Gianfranceschi L, Seglia N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina MT, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R (2005) “FastPCR: a PCR primer design and repeat sequence searching programme with additional tools for the manipulation and analysis of DNA and protein”. http://www.biocenter.helsinki.fi/bi/programs/fastpcr.htm

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–421

    Article  CAS  Google Scholar 

  • Ma J, Devos K, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–248

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Carle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Schulman A, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. In: Miller WJ, Capy P (eds) Mobile genetic elements and their application in genomics, vol 260. Humana Press, Totawa, pp 145–173

  • Shi Y, Yamamoto T, Hayashi T (2002) The Japanese pear genome program III. Copia-like retrotransposons in pear. Acta Hortic 587:247–252

    CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000). A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  PubMed  CAS  Google Scholar 

  • Sunako T, Wakako S, Senda M, Akada S, Ishikawa R, Niizeki M, Harada T (1999) An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol 119:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP: phylogenetic analysis using parsimony version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collection detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  PubMed  CAS  Google Scholar 

  • Tignon M, Watillon B, Kettman R (2001) Identification of Copia-like retrotransposable element by apple. Acta Hortic 546:515–520

    CAS  Google Scholar 

  • Venturi S, Dondini L, Donini P, Sansavini S (2005) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP. Theor Appl Genet DOI: 10.1007/s00122-005-0143-8 (in press)

  • Vicient C., Jääskeläinen M, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Vosman B, Visser D, van der Voort JR, Smulders MJ, van Eeuwijk F (2004) The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theor Appl Genet 109(8):1718–1725

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y, Ishikawa R, Niizeki M, Harada T (2003) A miniature DNA element associated with the genomes of pome fruit trees. HortScience 38(1):17–20

    CAS  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98(24):13778–13783

    Article  PubMed  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Finnish ministry of agriculture and forestry and the Nordic gene bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Antonius-Klemola.

Additional information

Communicated by J. S. Heslop-Harrison

Kristiina Antonius-Klemola, Ruslan Kalendar are the first two authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonius-Klemola, K., Kalendar, R. & Schulman, A.H. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112, 999–1008 (2006). https://doi.org/10.1007/s00122-005-0203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0203-0

Keywords

Navigation