Skip to main content
Log in

The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The high-osmolarity glycerol signal pathway plays an important role in the response of fungi to various environmental stresses. In this study, we characterized a mitogen-activated protein kinase kinase kinase gene BcOS4 in Botrytis cinerea, which is homologous to Saccharomyces cerevisiae SSK2/SSK22. The BcOS4 deletion mutant was significantly impaired in vegetative growth and conidial formation. The mutant exhibited increased sensitivity to the osmotic, oxidative stresses and to the fungicides iprodione and fludioxonil. Western blot analysis showed that BcSak1, a putative downstream component of BcOs4, was not phosphorylated in the mutant. In addition, the BcOS4 mutant was unable to infect leaves of rapeseed and cucumber, and grape fruits, although it can cause disease on apple fruits. All the defects were restored by genetic complementation of the BcOS4 deletion mutant with the wild-type BcOS4 gene. The data of this study indicate that BcOS4 is involved in vegetative differentiation, virulence, adaption to hyperosmotic and oxidative stresses, and to fungicides in B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avenot H, Simoneau P, Lacomi-Vasilescu B, Bataille-Simoneau N (2005) Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr Genet 47:234–243

    Article  CAS  Google Scholar 

  • Bahn Y (2008) Master and commander in fungal pathogens: the two-component system and the HOG signal pathway. Eukarot Cell 7:2017–2036

    Article  CAS  Google Scholar 

  • Bahn YS, Geunes-Boyer S, Heitman J (2007) Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans. Eukaryot Cell 6:2278–2289

    Article  CAS  Google Scholar 

  • Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M (2007) Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2 on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet 51:197–208

    Article  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two component signal transduction genes in fungal pathogens. Eukaryot Cell 6:1151–1161

    Article  Google Scholar 

  • Cheetham J, Smith DA, DA Silva DA, Doris KS, Patterson MJ, Bruce CR, Quinn J (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18:4603–4614

    Article  CAS  Google Scholar 

  • Cui W, Beever RE, Parkes SL, Weeds PL, Templeton MD (2002) An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet Biol 36:187–198

    Article  CAS  Google Scholar 

  • Cui W, Beever RE, Parkers SL, Templeton MD (2004) Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94:1129–1135

    Article  CAS  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    CAS  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Different signaling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835

    Article  CAS  Google Scholar 

  • Dohlman HG (2002) G proteins and pheromone signaling. Annu Rev Physiol 64:129–152

    Article  CAS  Google Scholar 

  • Fujimura M, Ochiai N, Oshima M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotechnol Biochem 67:186–191

    Article  CAS  Google Scholar 

  • Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1923

    Article  CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  Google Scholar 

  • Henkel E, Stoltz M (1982) A newly drafted colour test for the determination of triglycerides convenient for manual and mechanized analysis (glycerolphosphate-oxidase-PAP method). Fresenius Z Anal Chem 311:451–452

    Article  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Igbaria A, Lev S, Rose MS, Lee BN, Hadar R, Degani O, Horwitz BA (2008) Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol Plant Microbe Interact 21:769–780

    Article  CAS  Google Scholar 

  • Jones CA, Greer-Phillips SE, Borkovich KA (2007) The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell 18:2123–2136

    Article  CAS  Google Scholar 

  • Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T (2004) Fungicide activity through activation of a fungal signaling pathway. Mol Microbiol 53:1785–1796

    Article  CAS  Google Scholar 

  • Krantz M, Becit E, Hohmann S (2006) Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis. Curr Genet 49:152–165

    Article  CAS  Google Scholar 

  • Lew RR (2010) Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal Genet Biol 47:721–726

    Article  CAS  Google Scholar 

  • Liu X, Lu JP, Zhang L, Dong B, Min H, Lin FC (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6:977–1005

    Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45:1062–1074

    Article  CAS  Google Scholar 

  • Liu W, Soulie MC, Perrino C, Fillianger S (2011) The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genet Biol 48:377–387

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Ma Z, Luo Y, Michailides TJ (2006) Molecular characterization of the two-component histidine kinase gene from Monilinia fructicola. Pest Manag Sci 62:991–998

    Article  CAS  Google Scholar 

  • Ma Z, Yan Y, Luo Y, Michaildes TJ (2007) Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochem Physiol 88:300–306

    Article  CAS  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  CAS  Google Scholar 

  • McDonald BA, Martinez JP (1990) Restriction fragment length polymorphisms in Septoria tritici occur at high frequency. Curr Genet 17:133–138

    Article  CAS  Google Scholar 

  • Mehrabi R, Zwiers L, de Waard M, Kema GHJ (2006) MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 19:1262–1269

    Article  CAS  Google Scholar 

  • Moriwaki A, Kubo E, Arase S, Kihara J (2006) Disruption of SRM1, a mitogen-activated protein kinase gene, acts sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 257:253–261

    Article  CAS  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Gene Dev 12:2874–2886

    Article  Google Scholar 

  • Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horijoshi K, Yamaguchi I (2002) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442

    Article  Google Scholar 

  • Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M (2007) Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Bioph Res Co 363:639–644

    Article  CAS  Google Scholar 

  • Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276:702–1705

    Article  Google Scholar 

  • Posas F, Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17:1385–1394

    Article  CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  CAS  Google Scholar 

  • Raitt DC, Posas F, Saito H (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 9:4623–4631

    Article  Google Scholar 

  • Reiser V, Salah SM, Ammerer G (2000) Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2:620–627

    Article  CAS  Google Scholar 

  • Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun M, Lenasi H, Perez-Martin J, Talbot N, Wendland J, Di Pietro A (2009) Comparative genomics of MAP kinase and calcium–calcineurin signaling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298

    Article  CAS  Google Scholar 

  • Rui O, Hahn M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol 8:173–184

    Article  CAS  Google Scholar 

  • San Jose C, Monge RA, Perez-Diaz R, Pla J, Nombela C (1996) The mitogen activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178:5850–5852

    CAS  Google Scholar 

  • Santos JL, Shiozaki K (2001) Fungal histidine kinases. Sci STKE 98:1–14

    Google Scholar 

  • Schamber S, Leroch M, Diwo J, Mendgen K, Hahn M (2010) The role of mitogen-activated protein (MAP) kinase signaling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol 11:105–119

    Article  CAS  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    Article  Google Scholar 

  • Sweigard J, Chumley F, Carroll A, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fungal Genet Newslett 44:52–53

    Google Scholar 

  • Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pêcheur P, Kunduru AR, Leroux P, Legendre L (2006) A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact 9:1042–1050

    Article  Google Scholar 

  • Vitalini MW, de Paula RM, Goldsmith CS, Jones CA, Borkovich KA, Bell-Pedersen D (2007) Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci USA 104:18223–18228

    Article  CAS  Google Scholar 

  • Williamson B, Bettina T, Paul T, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  Google Scholar 

  • Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M (2003) Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193–1204

    Article  CAS  Google Scholar 

  • Yan L, Yang Q, Sundin GW, Li H, Ma Z (2010) The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol 47:753–760

    Article  CAS  Google Scholar 

  • Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z (2011) Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl Microbiol Biotechnol 90:215–226

    Article  CAS  Google Scholar 

  • Yoshimi A, Tsuda M, Tanaka C (2004) Cloning and characterization of the histidine kinase gene Dic1 from Cochliobolus heterostrophus that confers dicarboximide resistance and osmotic adaptation. Mol Genet Genom 271:228–236

    Article  CAS  Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the 973 program (2012CB114004), the China Agriculture Research System (CARS-3-1-15), and the program for Changjiang Scholars and Innovative Research Teams in University (IRT0943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Yan, L., Gu, Q. et al. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea . Appl Microbiol Biotechnol 96, 481–492 (2012). https://doi.org/10.1007/s00253-012-4029-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4029-9

Keywords

Navigation