Skip to main content
Log in

Identification of genes associated with flesh morphogenesis during grapevine fruit development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fruit morphogenesis is a process unique to the angiosperms, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. To identify genes putatively involved in the early development of grapevine fruit, we used the fleshless berry mutant (Vitis vinifera L. cv Ugni Blanc) that has dramatically reduced fruit size due to a lack of pericarp development. Using oligo-specific arrays, 53 and 50 genes were identified as being down- and up-regulated, respectively, in the mutant. In parallel, Suppression Subtractive Hybridization performed between the mutant and the wild type (WT) allowed the identification of new transcripts differentially expressed during the first stages of mutant and WT pericarp development. From this data, the picture emerged that the mutation promotes the expression of several genes related to ripening and/or to stress and impairs the expression of several regulatory genes. Among those, five genes encoding proteins previously reported to be associated with, or involved in, developmental processes in other species (a specific tissue protein 2, ATHB13, a BURP domain protein, PISTILLATA, and YABBY2), were identified and investigated further using real-time PCR and in situ hybridization. Expression in the pericarp was confirmed, specific spatial and/or temporal patterns were detected and differences were observed between the WT and the mutant during fruit development. Expression of these genes appeared to be affected during young fruit development in the mutant, suggesting that they may play a role in grape berry morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SSH:

Suppression subtractive hybridization

ISH:

In situ hybridization

DAA:

Days after anthesis

WPF:

Weeks post-flowering

References

  • Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383

    Article  CAS  Google Scholar 

  • Alcantara JM, Rey PJ (2003) Conflicting selection pressures on seed size: evolutionary ecology of fruit size in a bird-dispersed tree, Olea europaea. J Evol Biol 16:1168–1176

    Article  PubMed  CAS  Google Scholar 

  • Alvarez J, Smyth DR (2002) Crabs claw and Spatula genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci 163:17–41

    Article  CAS  Google Scholar 

  • Bartley GE, Ishida BK (2002) Digital fruit ripening: data mining in the TIGR tomato gene index. Plant Mol Biol Rep 20:115–130

    CAS  Google Scholar 

  • Bartley GE, Ishida BK (2003) Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis. BMC Plant Biol 3:4

    Article  PubMed  Google Scholar 

  • Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman LA, Hu M, Lantin S, Johnson DA, Miki BLA (2002) SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta 215:523–532

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR (2001) A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol 45:541–553

    Article  PubMed  CAS  Google Scholar 

  • Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    PubMed  CAS  Google Scholar 

  • Cao WX, Epstein C, Liu H, DeLoughery C, Ge NX, Lin JY, Diao R, Cao H, Long F, Zhang X, Chen YD, Wright PS, Busch S, Wenck M, Wong K, Saltzman AG, Tang ZH, Liu L, Zilberstein A (2004) Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics 5:26

    Article  PubMed  Google Scholar 

  • Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development 126:2715–2726

    PubMed  CAS  Google Scholar 

  • Cheniclet C, Rong WR, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305

    Article  CAS  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Cong B, Liu JP, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Ann Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Google Scholar 

  • da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Erqul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Busscher J, Colombo L, Losa A, Angenent GC (2004) Transcript profiling of transcription factor genes during silique development in Arabidopsis. Plant Mol Biol 56:351–366

    Article  PubMed  CAS  Google Scholar 

  • de Vries SC, De Vos WM, Harnsen MC, Wessels JGH (1985) A shoot-specific mRNA from pea: nucleotide sequence and regulation as compared to light-induced mRNAs. Plant Mol Biol 4:95–102

    Article  Google Scholar 

  • Desai S, Hill J, Trelogan L, Diatchenko L, Siebert PD (2000) Identification of differentially expressed genes by suppression subtractive hybridization. In: Hunt SP, Livesey R (eds) Functional genomics: a pratical approach. Oxford University Press, Oxford, pp81–112

    Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Yanofsky MF (2005) Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays 27:42–49

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Eames AJ, MacDaniels LH (1947) An introduction to plant anatomy, 2nd edn. MacGraw-Hill, New York, pp427

    Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131:2997–3006

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Romieu R, Moing A, Bouquet A, Maucourt M, Thomas MR, Torregrosa L (2006a) The grapevine flb mutation: a unique genotype to investigate differences between fleshy and non-fleshy fruit. Plant Physiol 140:537–547

    Article  CAS  Google Scholar 

  • Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006b) Somatic chimerism, genetic inheritance and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome 49:721–728

    Article  CAS  Google Scholar 

  • Ferrandiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Ann Rev Biochem 68:321–354

    Article  PubMed  CAS  Google Scholar 

  • Fougère-Rifot M, Benharbit El, Alami N, Brun O, Bouard J (1995) Ontogenesis of the gynoecium of Vitis vinifera L. var. Chardonnay in relation to the appearance of tannic vacuoles. J Int Sci Vigne Vin 29:105–130

    Google Scholar 

  • Fox SA, Loh S, Thean AL, Garlepp MJ (2004) Identification of differentially expressed genes in murine mesothelioma cell lines of differing tumorigenicity using suppression subtractive hybridization. Biochim Biophys Acta 1688:237–244

    PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  PubMed  CAS  Google Scholar 

  • Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and Regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  PubMed  CAS  Google Scholar 

  • Granger C, Coryell V, Khanna A, Keim P, Vodkin L, Shoemaker RC (2002) Identification, structure, and differential expression of members of a BURP domain containing protein family in soybean. Genome 45:693–701

    Article  PubMed  CAS  Google Scholar 

  • Grimplet J, Romieu C, Audergon JM, Albagnac G, Lambert P, Bouchet JP, Marty I, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening amongst 13006 EST. Physiol Plant 125:281–292

    Article  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Hanson J, Johannesson H, Engstrom P (2001) Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. Plant Mol Biol 45:247–262

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Regan S, Engstrom P (2002) The expression pattern of the homeobox gene ATHB13 reveals a conservation of transcriptional regulatory mechanisms between Arabidopsis and hybrid aspen. Plant Cell Rep 21:81–89

    Article  CAS  Google Scholar 

  • Hardie WJ, O’Brien TP, Jaudzems VG (1996) Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. Aust J Grape Wine Res 2:97–142

    Google Scholar 

  • Hattori J, Boutilier KA, Campagne MMV, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1991) In situ hybridization in plants. In: Gurr SJ, McPherson M, Bowles DJ (eds) Molecular plant pathology, a practical approach, vol 1. Oxford University Press, Oxford, pp163–174

    Google Scholar 

  • Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G (2004) Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol 56:133–143

    Article  PubMed  CAS  Google Scholar 

  • Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022

    Article  PubMed  CAS  Google Scholar 

  • Kumaran MK, Bowman JL, Sundaresan V (2002) YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:750–769

    Article  PubMed  CAS  Google Scholar 

  • Linke B, Nothnagel T, Borner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Munoz FJ, Dopico B, Labrador E (1997) Two growth-related organ-specific cDNAs from Cicer arietinum epicotyls. Plant Mol Biol 35:433–442

    Article  PubMed  CAS  Google Scholar 

  • Navarro C, Efremova N, Golz JF, Rubiera R, Kuckenberg M, Castillo R, Tietz O, Saedler H, Schwarz-Sommer Z (2004) Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Development 131:3649–3659

    Article  PubMed  CAS  Google Scholar 

  • Ojeda H, Deloire A, Carbonneau A, Ageorges A, Romieu C (1999) Berry development of grapevines: relations between the growth of berries and their DNA content indicate cell multiplication and enlargement. Vitis 38:145–150

    Google Scholar 

  • Ranjan P, Kao YY, Jiang HY, Joshi CP, Harding SA, Tsai CJ (2004) Suppression subtractive hybridization-mediated transcriptome analysis from multiple tissues of aspen (Populus tremuloides) altered in phenylpropanoid metabolism. Planta 219:694–704

    Article  PubMed  Google Scholar 

  • Rezaian MA, Krake LR (1987) Nucleic acid extraction and virus detection in grapevine. J Virol Methods 17:277–285

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Ito T, Shimura Y, Okada K (1999) FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Carabelli M, Ruberti I, Lucchetti S, Baima S, Morelli G (1994) Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. In: Puigdoménech P, Coruzzi G (eds) Analysis of plant development and metabolism. Springer-Verlag, Berlin/Heidelberg, pp411–426

    Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    PubMed  CAS  Google Scholar 

  • Sreekantan L, Torregrosa L, Fernandez L, Thomas MR (2006) VvMADS9, a class B MADS-box gene involved in grapevine flowering, shows different expression patterns in mutants with abnormal petal and stamen structures. Funct Plant Biol 33:877–886

    Article  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dedaldéchamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    Article  PubMed  CAS  Google Scholar 

  • Tesniere C, Vayda ME (1991) Method for the isolation of high-quality RNA from grape berry tissues without contaminating tannins or carbohydrates. Plant Mol Biol Rep 9:242–251

    CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Wang AM, Xia Q, Xie WS, Datla R, Selvaraj G (2003) The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA 100:14487–14492

    Article  PubMed  CAS  Google Scholar 

  • Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, Mundy J, Kay SA, Chua NH (1990) Differential expression of two related organ-specific genes in pea. Plant Mol Biol 14:765–774

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ito M, Kato M (2004) YABBY2-homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:917–924

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple systematic variation. Nucleic Acid Res 30:e15

    Article  PubMed  Google Scholar 

  • Yao JL, Dong YH, Morris BAM (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Françoise Dosba and Dr. Guy Albagnac for encouraging the project and for helpful discussions, Pat Iocco for her helpful assistance at various stages of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Ageorges.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, L., Torregrosa, L., Terrier, N. et al. Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol 63, 307–323 (2007). https://doi.org/10.1007/s11103-006-9090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9090-2

Keywords

Navigation