Skip to main content

Advertisement

Log in

Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Greenhouse experiments were conducted to investigate the impact of predicted climate change (elevated CO2, 700 μmol CO2 mol−1 air vs. ambient; elevated temperature, 28/18°C vs. 24/14°C, day/night; and partial irrigation, 40% of field capacity vs. well-irrigated) on grape berry quality characteristics during ripening. Grapevine (Vitis vinifera L. cv. Tempranillo) fruiting cuttings were used as experimental plant material. Climate change shortened the time between grape veraison and full maturity. At harvest time, many of the grape quality parameters determined were affected by the different grape maturity. The data were re-grouped according to total soluble solids to factor out changes due to the shortened time to maturity, and the effects on grape quality were then re-examined. Under current CO2 and temperature conditions, partial irrigation decreased berry malic acid concentration and facilitated anthocyanins extractability. Elevated CO2 and temperature decreased berry malic acid and total anthocyanins potential in well-irrigated plants and increased tonality index, irrespective of water availability. In partial irrigation conditions, elevated CO2 and temperature hindered the anthocyanins extractability. In summary, results indicate that climate change (elevated CO2, high temperature and partial irrigation) affects phenology and berry quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

°Bx:

°Brix

EA%:

Cellular extractability

IPCC:

Intergovernmental Panel on Climate Change

Mp%:

Phenolic maturity of the grapes

RH:

Relative humidity

Amb_WI:

Ambient CO2, ambient temperature and well irrigation

Amb_PI:

Ambient CO2, ambient temperature and partial irrigation

700 T+4_WI:

Elevated CO2, elevated temperature and well irrigation

700 T+4_PI:

Elevated CO2, elevated temperature and partial irrigation

VPD:

Vapor pressure deficit

References

  • Antolín MC, Baigorri H, De Luis I, Aguirrezabal F, Geny L, Broquedis M, Sánchez-Díaz M (2003) ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo). Aust J Grape Wine Res 9:169–176

    Article  Google Scholar 

  • Antolín MC, Ayari M, Sánchez-Díaz M (2006) Effects of partial rootzone drying on yield, ripening and berry ABA in potted Tempranillo grapevines with split roots. Aust J Grape Wine Res 12:13–20

    Article  Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224

    Article  Google Scholar 

  • Bindi M, Fibbi L, Miglietta F (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155

    Article  Google Scholar 

  • Blouin J, Guimberteau G (2003) Maduración. In Maduracion y madurez de la uva. Mundi-Prensa Libros, pp. 32–40

  • Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663

    Article  CAS  PubMed  Google Scholar 

  • Bowes G (1993) Facing the inevitable—plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 44:309–332

    Article  CAS  Google Scholar 

  • Cohen SD, Tarara JM, Kennedy JA (2008) Assessing the impact of temperature on grape phenolic metabolism. Anal Chim Acta 621:57–67

    Article  CAS  PubMed  Google Scholar 

  • de Freitas VAP, Glories Y, Monique A (2000) Developmental changes of procyanidins in grapes of red Vitis vinifera varieties and their composition in respective wines. Am J Enol Vitic 51:397–403

    Google Scholar 

  • De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes CM, Pereira JS, Chaves MM (2005) Grape berry metabolism in field-grown grapevines exposed to different irrigation strategies. Vitis 44:103–109

    Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine Res 9:15–27

    Article  CAS  Google Scholar 

  • Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol Plant 126:458–468

    Article  CAS  Google Scholar 

  • Esteban MA, Villanueva MJ, Lissarrague JR (1999) Effect of irrigation on changes in berry composition of Tempranillo during maturation. Sugars, organic acids, and mineral elements. Am J Enol Vitic 50:418–434

    Google Scholar 

  • Esteban MA, Villanueva MJ, Lissarrague JR (2001) Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L.) grape berries during ripening. J Sci Food Agric 81:409–420

    Article  CAS  Google Scholar 

  • Glories Y, Augustin M (1993) Maturité phénolique du raisin, consèquences technologiques: applications aux millésimes 1991 et 1992. Actes du Colloque “Journée technique du CIVB” 21 Janvier, Bordeaux, 56

  • Gonçalves B, Falco V, Moutinho-Pereira J, Bacelar E, Peixoto F, Correia C (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J Agric Food Chem 57:265–273

    Article  PubMed  Google Scholar 

  • Hanlin RL, Downey MO (2009) Condensed tannin accumulation and composition in skin of Shiraz and Cabernet Sauvignon grapes during berry development. Am J Enol Vitic 60:13–23

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station. Circular 347:1–32

    Google Scholar 

  • Intrigliolo DS, Castel JR (2009) Response of Vitis vinifera cv. ‘Tempranillo’ to partial rootzone drying in the field: water relations, growth, yield and fruit and wine quality. Agric Water Manag 96:282–292

    Article  Google Scholar 

  • IPCC (2007a) Climate change and its impacts in the near and long term under different scenarios. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, pp 44–54

    Google Scholar 

  • IPCC (2007b) Observed changes in climate and their effects. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, pp 30–33

    Google Scholar 

  • Jackson D, Lombard P (1993) Environmental and management practices affecting grape composition and wine quality—A review. Am J Enol Vitic 44:409–430

    CAS  Google Scholar 

  • Jifon J, Wolfe D (2002) Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Glob Chang Biol 8:1018–1027

    Article  Google Scholar 

  • Kataoka I, Kubo Y, Sugiura A, Tomana T (1983) Effects of temperature, cluster shading and some growth regulators on L-phenylalanine ammonia-lyase activity and anthocyanin accumulation in black grapes. Mem Coll Agric Kyoto Univ 124:35–44

    Google Scholar 

  • Kliewer W (1970) Effect of day temperature and light intensity on coloration of Vitis vinifera L. grapes. J Am Soc Hortic Sci 95:693–697

    Google Scholar 

  • Kliewer WM, Weaver RJ (1971) Effect of crop level and leaf area on growth, composition and coloration of Tokay grapes. Am J Enol Vitic 22:172

    Google Scholar 

  • Koundouras S, Marinos V, Gkoulioti A, Kotseridis Y, van Leeuwen C (2006) Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effect on wine phenolic and aroma components. J Agric Food Chem 54:5077–5086

    Article  CAS  PubMed  Google Scholar 

  • Lakso AN, Kliewer WM (1975) The influence of temperature on malic acid metabolism in grape berries: I. enzyme responses. Plant Physiol 56:370–372

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • López MI, Sánchez MT, Díaz A, Ramírez P, Morales J (2007) Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas. Int J Food Sci Nutr 58:491–507

    Article  PubMed  Google Scholar 

  • Matthews MA, Anderson MM (1989) Reproductive development in grape (Vitis vinifera L.): responses to seasonal water deficits. Am J Enol Vitic 40:52–60

    Google Scholar 

  • Matthews M, Ishii R, Anderson M, O’mahony M (1990) Dependence of wine sensory attributes on vine water status. J Sci Food Agric 51:321–335

    Article  CAS  Google Scholar 

  • Mazza G, Miniati E (1993) Anthocyanins in fruit, vegetables, and grains. CRC, Boca Raton

    Google Scholar 

  • McCarthy MG (1997) The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Aust J Grape Wine Res 3:102–108

    Google Scholar 

  • Mooney H, Winner WE, Pell EJ (1991) Responses of plants to multiple stresses. Academic

  • Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319–330

    Article  CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume H (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Mullins MG (1966) Test-plant for investigations of the physiology of fruiting in Vitis vinifera L. Nature 209:419–420

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Developmental physiology: the vegetative grapevine. In: Biology of the grapevine. Cambridge University Press, New York, pp. 80–111

  • Myburgh PA (2003) Responses of Vitis vinifera L. cv. Sultanina to water deficits during various pre- and post-harvest phases under semi-arid conditions. S Afr J Enol Vitic 24:25–33

    Google Scholar 

  • Navarro S, Leon M, Roca-Perez L, Boluda R, Garcia-Ferriz L, Perez-Bermudez P, Gavidia I (2008) Characterisation of Bobal and Crujidera grape cultivars, in comparison with Tempranillo and Cabernet Sauvignon: evolution of leaf macronutrients and berry composition during grape ripening. Food Chem 108:182–190

    Article  CAS  Google Scholar 

  • Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am J Enol Vitic 53:261–267

    CAS  Google Scholar 

  • Ollat N, Geny L, Soyer J (1998) Les boutures fructiferes de vigne: validation d’un modele d’etude du developpement de la physiologie de la vigne. I. Caracteristiques de l’appareil vegetatif. J Int Sci Vigne Vin 32:1–9

    Google Scholar 

  • Rebelein H (1973) Rapid quantitative determination of tartaric acid. Chem Mikrobiol Technol Lebensm 2:33–38

    CAS  Google Scholar 

  • Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Ribéreau-Gayon J, Stonestreet E (1965) Le dosage des anthocyanes dans le vin rouge. Bull Soc Chim 9:2649–2652

    Google Scholar 

  • Roby G, Matthews MA (2004) Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust J Grape Wine Res 10:74–82

    Article  Google Scholar 

  • Roby G, Harbetson JF, Adams DA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10:100–107

    Article  CAS  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant-responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  CAS  PubMed  Google Scholar 

  • Salon JL, Chirivella C, Castel JR (2005) Response of cv. Bobal to timing of deficit irrigation in Requena, Spain: water relations, yield, and wine quality. Am J Enol Vitic 56:1–8

    Google Scholar 

  • Santa María E (2004) Incidencia de Botrytis cinera en relación con diferentes aspectos fisiológicos de la vid. PhD Thesis Dissertation, University of Navarra, Spain.

  • Segade SR, Vázquez ES, Losada ED (2008) Influence of ripeness grade on accumulation and extractability of grape skin anthocyanins in different cultivars. J Food Compos Anal 21:599–607

    Article  Google Scholar 

  • Shiraishi S, Watanabe Y (1994) Anthocyanin pigments in the grape skins of cultivars (Vitis spp.). Sci Bull Fac Agric Kyushu Univ 48:255–262

    CAS  Google Scholar 

  • Singleton V (1972) Effects on red wine quality of removing juice before fermentation to simulate variation in berry size. Am J Enol Vitic 43:63–70

    Google Scholar 

  • Sudraud P (1958) Interpretation des courbes d’absorption des vins rouges. Ann Technol Agric 7:203–208

    Google Scholar 

  • Vidal M, Blouin J (1978) Dosage colorimetrique rapide de l’acide tartrique dans les moûts et les vins. Rev Fr Oenologie 16:39–46

    Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1962) Development and composition of grapes. In: General viticulture. University of California Press, Berkeley, pp. 138–196

  • Yamane T, Shibayama K (2006) Effects of changes in the sensitivity to temperature on skin coloration in ‘Aki Queen’ grape berries. J Jpn Soc Hortic Sci 75:458–462

    Article  CAS  Google Scholar 

  • Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Spanish Ministry of Science and Innovation (BFU2008-01405/BFI), Fundación Universitaria de Navarra (Plan de Investigación de la Universidad de Navarra) and Caja Navarra is gratefully acknowledged. Fermín Morales wishes to thank Gobierno de Aragón (A03 research group) for financial support. Carolina Salazar-Parra was the recipient of a grant from Asociación de Amigos de la Universidad de Navarra. Authors wish to thank A. Urdiain and M. Oyarzun for excellent technical assistance, and Station of Viticulture and Enology of Navarra (Olite, Navarra, Spain) for dormant cuttings supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Morales.

Additional information

Responsible Editor: Peter J. Gregory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar Parra, C., Aguirreolea, J., Sánchez-Díaz, M. et al. Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337, 179–191 (2010). https://doi.org/10.1007/s11104-010-0514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0514-z

Keywords

Navigation