Review
Vacuoles and prevacuolar compartments

https://doi.org/10.1016/S1369-5266(00)00115-1Get rights and content

Abstract

Plant vacuoles are complex and dynamic organelles. Important advances have been made in our understanding of the transporters present in the tonoplast and of the molecular interactions that allow targeting to vacuoles. Despite these advances, markers that permit vacuoles to be defined unambiguously have not yet been identified.

Introduction

Plant vacuoles are morphologically and functionally diverse organelles, and recent reports have emphasized that there are different kinds of plant vacuoles. Some function primarily as storage organelles, others as lytic compartments. More than one kind of vacuole has been observed in cells undergoing differentiation [1], maturation [2], and autophagy [3], and in fully differentiated cells [4], [5]. Vacuole function depends on a suite of soluble and membrane-bound proteins. These are specifically tailored for each cell type at every developmental stage, and the import and destruction of vacuolar proteins is carefully orchestrated.

A major impediment to our understanding of plant vacuoles is the lack of specific markers for these organelles and other endomembrane components. Different kinds of vacuoles may be morphologically similar, and prevacuolar compartments may be indistinguishable from other single- membrane-bound organelles. Yet, an accurate interpretation of many kinds of data requires precise identification of endomembrane compartments. Our view of plant vacuoles and prevacuolar compartments is clouded because dependable markers are not available and agreed upon. Markers for these compartments have been proposed, but have not been shown to be unambiguous. Indeed, a unique marker may not exist for some compartments.

In this review, we consider recent developments in our understanding of plant vacuoles and prevacuolar compartments. Particular attention is focused on integral membrane transporters in the tonoplast and vesicle trafficking of proteins to the vacuole. This review is limited to literature published in 1999 to mid-2000 that has particular relevance to these topics.

Section snippets

Aquaporins are abundant constituents of all vacuoles

The tonoplast-intrinsic proteins (TIPs) are often the most abundant vacuolar transporters (for review see [6radical dot]). Many of these proteins function as water channels (i.e. aquaporins) when expressed in Xenopus laevis oocytes. Individual plant species typically have several TIP genes, with representatives in evolutionarily conserved classes (e.g. see [7radical dot]). TIP genes within species are differentially regulated, suggesting that different TIPs may be utilized under specific conditions. Two recent

Routes for protein transport to the vacuole

Proteins destined for the vacuole are synthesized on the ER and delivered by vesicles to the vacuole (for reviews see [29], [30], [31], [32]). Most soluble proteins transported to the vacuole pass through the Golgi apparatus, where they are sorted into vesicles. These vesicles may then fuse with a prevacuolar compartment or directly with the tonoplast. Alternative routes that bypass the Golgi or begin as endocytotic vesicles are likely to exist.

Morphologically distinct transport vesicles carry proteins to the vacuole

Three classes of morphologically distinct vesicles

Vacuolar sorting signals

The orderly sorting of proteins into transport vesicles requires recognition of vacuolar sorting signals by vesicle-associated receptors. Three classes of vacuolar signals have been characterized in plants: first, short sequences within an amino-terminal propeptide containing a consensus sequence of NPIR or NPIXL (using the single-letter code for amino acids); second, short sequences with no identified consensus sequence at the carboxyl terminus of a carboxy-terminal propeptide; and third,

The uncertain nature of prevacuolar compartments

Although there is agreement that plant cells might contain a prevacuolar compartment, the nature of this organelle remains unclear. Prevacuoles are defined as organelles that receive cargo from transport vesicles and subsequently deliver that cargo to the vacuole by fusion with the tonoplast. Alternatively, a prevacuole can be defined as an organelle that contains t-SNAREs and v-SNAREs, which bind to v-SNAREs on transport vesicles and t-SNAREs on vacuoles, respectively. To date, a prevacuolar

Conclusions

Plant vacuoles and prevacuolar compartments are part of a continuum of endomembrane compartments. All of these compartments are specialized for individual functions. Most of them are dynamic and can change morphologically and functionally to suit the needs of the cell. Although our understanding of plant vacuoles remains rudimentary, we are beginning to appreciate the plasticity of this organelle. Rapid progress is being made in the areas of tonoplast transport and the regulation and import of

Acknowledgements

The authors thank Masayoshi Maeshima and Christophe Maurel for critical review of this manuscript. Eleanor Crump assisted in editing the manuscript and her help is gratefully acknowledged.

References and recommended reading

Papers of particular interest, published within the annual period of review,have been highlighted as:

  • • of special interest

  • •• of outstanding interest

References (50)

  • SJ Swanson et al.

    Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles by use of fluorescent probes

    Plant Cell

    (1998)
  • G-P Di Sansebastiano et al.

    Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway

    Plant J

    (1998)
  • M Karlsson et al.

    An abundant TIP expressed in mature highly vacuolated cells

    Plant J

    (2000)
  • F Barrieu et al.

    Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells

    Planta

    (1999)
  • X Sarda et al.

    Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air

    Plant Mol Biol

    (1999)
  • R Morillon et al.

    Osmotic water permeability of isolated vacuoles

    Planta

    (1999)
  • P Gerbeau et al.

    Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes

    Plant J

    (1999)
  • G-Y Jauh et al.

    Tonoplast intrinsic protein isoforms as markers for vacuolar functions

    Plant Cell

    (1999)
  • H Sze et al.

    Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis

    Plant Cell

    (1999)
  • R Ratajczak et al.

    Localization of pyrophosphatase in membranes of cauliflower inflorescence cells

    Planta

    (1999)
  • W Kim et al.

    Functional complementation of yeast vma1DELTA cells by a plant subunit A homolog rescues the mutant phenotype and partially restores vacuolar H+-ATPase activity

    Plant J

    (1999)
  • K Schumacher et al.

    The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development

    Genes Devel

    (1999)
  • KD Hirschi et al.

    CAX1, an H+/Ca2+ antiporter from Arabidopsis

    Proc Natl Acad Sci USA

    (1996)
  • H Ueoka-Nakanishi et al.

    Properties and molecular cloning of Ca2+/H+ antiporter in the vacuolar membrane of mung bean

    Eur J Biochem

    (1999)
  • H Ueoka-Nakanishi et al.

    Functional expression of mung bean Ca2+/H+ antiporter in yeast and its intracellular localization in the hypocotyl and tobacco cells

    Eur J Biochem

    (2000)
  • Cited by (49)

    • The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway

      2011, Molecular Plant
      Citation Excerpt :

      Arabidopsis AtRMR2 (JR702) was found to specifically bind tobacco chitinase ctVSD in vivo and in vitro (Park et al., 2007). PVCs are membrane-bounded intermediate organelles that have dual functions, either mediating protein traffic from Golgi apparatus or TGN to vacuoles, or protein recycling from PVC to Golgi apparatus or TGN (Bethke and Jones, 2000; Jiang and Rogers, 2003). Several studies indicated that the lytic PVC is a multivesicular body (MVB) in plant cells that is defined by the vacuolar sorting receptor proteins (VSRs) or their GFP-tagged reporters (Paris et al., 1997; Tse et al., 2004; Miao et al., 2006).

    • Hordein accumulation in developing barley grains

      2019, Frontiers in Plant Science
    • Seeds as Bioreactors

      2018, Molecular Pharming: Applications, Challenges and Emerging Areas
    View all citing articles on Scopus
    View full text