Skip to main content
Log in

Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett JA, Payne RW & Yarrow D (1990) Yeasts: Characteristics and Identification, 2nd ed. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Barns SM, Lane DJ, Sogin ML, Bibeau C & Weisburg WG (1991) Evolutionary relationships among pathogenic Candidaspecies and relatives. J. Bacteriol. 173: 2250–2255

    Google Scholar 

  • Billon-Grand G (1989) A new ascosporogenous yeast genus: Yamadazymagen. nov. Mycotaxon 35: 201–204

    Google Scholar 

  • Boekhout T, Kurtzman CP, O'Donnell K & Smith MTh (1994) Phylogeny of the yeast genera Hanseniaspora(anamorph Kloeckera), Dekkera(anamorph Brettanomyces), and Eeniellaas inferred from partial 26S ribosomal DNA nucleotide sequences. Int. J. Syst. Bacteriol. 44: 781–786

    Google Scholar 

  • Bruns TD, White TJ & Taylor JW (1991) Fungal molecular systematics. Ann. Rev. Ecol. Syst. 22: 525–564

    Google Scholar 

  • Cottrell M & Kock JLF (1989) The yeast family Lipomycetaceae Novák et Zsolt emend. van der Walt et al., and the genus Myxozymavan der Walt et al., 1. A historical account of its delimitation and 2. The taxonomic relevance of cellular long-chain fatty acid composition and other phenotypic characters. Syst. Appl. Microbiol. 12: 291–305

    Google Scholar 

  • Eriksson OE, Svedskog A & Landvik S (1993) Molecular evidence for the evolutionary hiatus between Saccharomyces cerevisiaeand Schizosaccharomyces pombe. Syst. Ascomycetum 11: 119–162

    Google Scholar 

  • Fuson GB, Presley HL & Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int. J. Syst. Bacteriol. 37: 371–379

    Google Scholar 

  • Giménez-Jurado G, Cidadão AJ & Beijn-van der Waaij A (1994) A novel heterothallic ascomycetous yeast species: Stephanoascus smithiae, teleomorph of Candida edax. Syst. Appl. Microbiol. 17: 237–246

    Google Scholar 

  • Golubev WI, Smith MTh, Poot GA & Kock JLF (1989) Species delineation in the genus NadsoniaSydow. Antonie van Leeuwenhoek 55: 369–382

    Google Scholar 

  • Guadet J, Julien J, Lafey JF & Brygoo Y (1989) Phylogeny of some Fusariumspecies, as determined by large subunit rRNA sequence comparison. Mol. Biol. Evol. 6: 227–242

    Google Scholar 

  • Hadrys H, Balick M & Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55–63

    Google Scholar 

  • Hausner G, Reid J & Klassen GR (1992) Do galeate-ascospore members of the Cephaloascaceae, Endomycetaceae and Ophiostomataceae share a common phylogeny? Mycologia 84: 870–881

    Google Scholar 

  • Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert GL & De Wachter R (1992) Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences. Syst. Appl. Microbiol. 15: 98–104

    Google Scholar 

  • Hillis DM & Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182–192

    Google Scholar 

  • Holzschu DL, Phaff HJ, Tredick J & Hedgecock D (1983) Pichia pseudocactophila, a new species of yeast occurring in necrotic tissue of columnar cacti in the North American Sonoran Desert. Can. J. Microbiol. 29: 1314–1322

    Google Scholar 

  • James SA, Cai J, Roberts IN & Collins MD (1997) A phylogenetic analysis of the genus Saccharomycesbased on 18S rRNA gene sequences: description ofSaccharomyces kunashirensissp. nov. and Saccharomyces martiniaesp. nov. Int. J. Syst. Bacteriol. 47: 453–460

    Google Scholar 

  • Kock JLF, van der Walt JP & Yamada Y (1995) Smithiozymagen. nov. (Lipomycetaceae). S. African J. Bot. 61: 232–233

    Google Scholar 

  • Kurtzman CP (1984a) Synonymy of the yeast genera Hansenulaand Pichiademonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 50: 209–217

    Google Scholar 

  • — (1984b) Resolution of varietal relationships within the species Hansenula anomala, Hansenula bimundalisand Pichia nakazawaethrough comparisons of DNA relatedness. Mycotaxon 19: 271–279

    Google Scholar 

  • — (1987) Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complementarity. Stud. Mycol. 30: 459–468

    Google Scholar 

  • — (1990) Candida shehatae-genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Antonie van Leeuwenhoek 57: 215–222

    Google Scholar 

  • — (1991) DNA relatedness among saturn-spored yeasts assigned to the genera Williopsisand Pichia. Antonie van Leeuwenhoek 60: 13–19

    Google Scholar 

  • — (1992) DNA relatedness among phenotypically similar species of Pichia. Mycologia 84: 72–76

    Google Scholar 

  • — (1993a) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Antonie van Leeuwenhoek 63: 165–174

    Google Scholar 

  • — (1993b) The systematics of ascomycetous yeasts defined from ribosomal RNA sequence divergence: theoretical and practical considerations. In: Reynolds DR & Taylor JW (Eds) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (pp 271–279). CAB International, Wallingford, UK

    Google Scholar 

  • — (1995) Relationships among the genera Ashbya, Eremothecium, Holleyaand Nematosporadetermined from rDNA sequence divergence. J. Ind. Microbiol. 14: 523–530

    Google Scholar 

  • Kurtzman CP & Phaff HJ (1987) Molecular taxonomy. In: Rose AH & Harrison JS (Eds) The Yeasts, Vol 1, Biology of Yeasts (pp 63–94). Academic Press, London

    Google Scholar 

  • Kurtzman CP & Robnett CJ (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomycesand Schwanniomycesdetermined from partial ribosomal RNA sequences. Yeast 7: 61–72

    Google Scholar 

  • — (1994a) Orders and families of ascosporogenous yeasts and yeast-like taxa compared from ribosomal RNA sequence similarities. In: Hawksworth, DL (Ed) Ascomycete Systematics: Problems and Perspectives in the Nineties (pp 249–258). Plenum Press, New York

  • — (1994b) Synonymy of the yeast genera Wingeaand Debaryomyces. Antonie van Leeuwenhoek 66: 337–342

  • — (1995) Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can. J. Bot. 73: S824–S830

    Google Scholar 

  • — (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35: 1216–1223

    Google Scholar 

  • Kurtzman CP, Johnson CJ & Smiley MJ (1979) Determination of conspecificity of Candida utilisand Hansenula jadiniithrough DNA reassociation. Mycologia 71: 844–847

    Google Scholar 

  • Kurtzman CP, Smiley MJ, Johnson CJ, Wickerham LJ & Fuson GB (1980a) Two new and closely related heterothallic species, Pichia amylophilaand Pichia mississippiensis:Characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30: 208–216

    Google Scholar 

  • Kurtzman CP, Smiley MJ & Johnson CJ (1980b) Emendation of the genus IssatchenkiaKudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30: 503–513

    Google Scholar 

  • Lee F-L, Lee C-F, Okada S, Uchimura T & Kozaki M (1992) Chemotaxonomic comparison of Pichia farinosa, Pichia sorbitophilaand Candida cacaoi. Bull. Jpn. Fed. Culture Collections 8: 71–78

    Google Scholar 

  • Lee C-F, Lee F-L, Hsu W-H & Hsu WH (1993) DNA reassociation and electrokaryotype study of some Candidaspecies and synonymy of Candida terebra, Candida entomaeaand Candida veronae.Can. J. Microbiol. 39: 867–867

    Google Scholar 

  • Liu Z & Kurtzman CP (1991) Phylogenetic relationships among species of Williopsisand Saturnosporagen. nov. as determined from partial rRNA sequences. Antonie van Leeuwenhoek 60: 21–30

    Google Scholar 

  • Mendonça-Hagler LC, Hagler AN & Kurtzman CP (1993) Phylogeny of Metschnikowiaspecies estimated from partial rRNA sequences. Int. J. Syst. Bacteriol. 43: 368–373

    Google Scholar 

  • Messner R, Prillinger H, Ibl M & Himmler G (1995) Sequences of ribosomal genes and internal transcribed spacers move three plant parasitic fungi, Eremothecium ashbyi, Ashbya gossypiiand Nematospora coryli, towards Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 41: 31–42

    Google Scholar 

  • Meyer SA, Smith MT & Simione FP (1978) Systematics of HanseniasporaZikes and KloeckeraJanke. Antonie van Leeuwenhoek 44: 79–96

    Google Scholar 

  • Mikata K & Yamada Y (1995) Ogataea kodamae, a new combination for a methanol-assimilating yeast species, Pichia kodamaevan der Walt et Yarrow. Inst. Ferment. Osaka (IFO) Res. Commun. 17: 99–101

    Google Scholar 

  • Nakase T & Suzuki M (1985). Taxonomic studies on Debaryomyces hansenii(Zoph) Lodder et Kreger-van Rij and related species. I. Chemotaxonomic investigations. J. Gen. Appl. Microbiol. 31: 49–69

    Google Scholar 

  • Nishida H & Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Mol. Biol. Evol. 10: 431–436

    Google Scholar 

  • O'Donnell K (1993) Fusariumand its near relatives. In: Reynolds DR & Taylor JW (Eds) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (pp 225–233). CAB International, Wallingford, UK

    Google Scholar 

  • Peterson SW & Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst. Appl. Microbiol. 14: 124–129

    Google Scholar 

  • Phaff HJ, Starmer WT, Tredick-Kline J & Aberdeen V (1987a) Pichia barkeri, a new yeast species occurring in necrotic tissue of Opuntia stricta. Int. J. Syst. Bacteriol. 37: 386–390

    Google Scholar 

  • Phaff HJ, Starmer WT & Tredick-Kline J (1987b) Pichia kluyverisensu lato-A proposal for two new varieties and a new anamorph. In: de Hoog GS, Smith MTh & Weijman ACM (Eds) The Expanding Realm of Yeast-like Fungi (pp 403–414). Elsevier, Amsterdam

    Google Scholar 

  • Phaff HJ, Starmer WT, Lachance MA, Aberdeen V & Tredick-Kline J (1992) Pichia caribaea, a new species of yeast occurring in necrotic tissue of cacti in the Caribbean area. Int. J. Syst. Bacteriol. 42: 459–462

    Google Scholar 

  • Phaff HJ, Blue J, Hagler AN & Kurtzman CP (1997) Dipodascus starmerisp. nov., a new species of yeast occurring in cactus necroses. Int. J. Syst. Bacteriol. 47: 307–312

    Google Scholar 

  • Price CW, Fuson GB & Phaff HJ (1978) Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomycesand Pichia. Microbiol. Rev. 42: 161–193

    Google Scholar 

  • Raeder U & Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17–20

    Google Scholar 

  • Reddy MS & Kramer CL (1975) A taxonomic revision of the Protomycetales. Mycotaxon 3: 1–50

    Google Scholar 

  • Smith MTh, Poot GA, Batenburg-van der Vegte WH & van der Walt JP (1995a) Species delimitation in the genus Lipomycesby nuclear genome comparison. Antonie van Leeuwenhoek 68: 75–87

    Google Scholar 

  • Smith MTh, van der Walt JP & Batenburg-van der Vegte WH (1995b) Babjeviagen. nov.-a new genus of the Lipomycetaceae. Antonie van Leeuwenhoek 67: 177–179

    Google Scholar 

  • Starmer WT, Phaff HJ, Tredick J, Miranda M & Aberdeen V (1984) Pichia antillensis, a new species of yeast associated with necrotic stems of cactus in the Lesser Antilles. Int. J. Syst. Bacteriol. 34: 350–354

    Google Scholar 

  • Suzuki M, Nakase T, Mori H, Toriumi H & Kurtzman CP (1992) Chemotaxonomic study on halophilic/halotolerant yeasts in the matured soy sauce mashes. Bull. Jpn. Fed. Cult. Collect. 8: 18–27

    Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony. version 3.1.1. Illinois Natural History Survey. Champaign

  • Tengku Zainal Mulok TE (1988) Nuclear DNA base composition and base sequence complementarity of recently described Candidaspecies and strains of selected species. Thesis, Georgia State University, Atlanta, GA

    Google Scholar 

  • van der Walt JP, von Arx JA, Ferreira NP & Richards PDG (1987) Zygozymagen. nov., a new genus of the Lipomycetaceae. Syst. Appl. Microbiol. 9: 115–120

    Google Scholar 

  • Vaughan-Martini A (1989) Saccharomyces paradoxuscomb. nov., a newly separated species of the Saccharomyces sensu strictocomplex based upon nDNA/nDNA homologies. Syst. Appl. Microbiol. 12: 179–182

    Google Scholar 

  • Vaughan-Martini A & Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomycessensu stricto. Int. J. Syst. Bacteriol. 35: 508–511

    Google Scholar 

  • Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst. Appl. Microbiol. 6: 48–53

    Google Scholar 

  • Wickerham LJ (1951) Taxonomy of yeasts. USDA, Washington, D. C. Tech. Bull. 1029

    Google Scholar 

  • Wilmotte A, Van de Peer Y, Goris A, Chapelle S, De Baere R, Nelissen B, Neefs J-M, Hennebert GL & De Wachter R (1993) Evolutionary relationships among higher fungi inferred from small ribosomal subunit RNA sequence analysis. Syst. Appl. Microbiol. 16: 436–444

    Google Scholar 

  • Yamada Y & Banno I (1987) Hasegawaeagen. nov., an ascosporogenous yeast genus for the organisms whose asexual reproduction is by fission and whose ascospores have smooth surfaces without papillae and which are characterized by the absence of coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. J. Gen. Appl. Microbiol. 33: 295–298

    Google Scholar 

  • Yamada Y & Nakase T (1985) Waltomycesa new ascosporogenous yeast genus for the Q10-equipped, slime-producing organisms whose asexual reproduction is by multilateral budding and whose ascospores have smooth surfaces. J. Gen. Appl. Microbiol. 31: 491–492

    Google Scholar 

  • Yamada Y & Nogawa C (1995) Kawasakiagen. nov. for Zygozyma arxii, the Q9-equipped species in the genus Zygozyma(Lipomycetaceae). Bull. Fac. Agric. Shizuoka Univ. 45: 31–34

    Google Scholar 

  • Yamada Y, Maeda K & Banno I (1992a) The phylogenetic relationships of the Q9-equipped, spheroidal ascospore-forming Pichiaspecies based on the partial sequences of 18S and 26S ribosomal RNAs. J. Gen. Appl. Microbiol. 38: 247–252

    Google Scholar 

  • Yamada Y, Maeda K, Banno I & van der Walt JP (1992b) An emendation of the genus DebaryomycesLodder et Kreger-van Rij and the proposals of two new combinations, Debaryomyces carsoniiand Debaryomyces etchellsii(Saccharomycetaceae). J. Gen. Appl. Microbiol. 38: 623–626

    Google Scholar 

  • Yamada Y, Maeda K & Banno I (1992c) An emendation of KloeckerasporaNiehaus with the type species Kloeckeraspora osmophilaNiehaus, and the proposals of two new combinations, Kloeckeraspora occidentalisand Kloeckeraspora vineae(Saccharomycetaceae). Bull. Jpn. Fed. Culture Collections 8: 79–85

    Google Scholar 

  • Yamada Y, Maeda K & Mikata K (1994a) The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichiaspecies, formerly classified in the genus HansenulaSydow, et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): The proposals of three new genera, Ogataea, Kuraishiaand Nakazawaea. Biosci. Biotechnol. Biochem. 58: 1245–1257

    Google Scholar 

  • Yamada Y, Matsuda M, Maeda K, Sakakibara C & Mikata K (1994b) The phylogenetic relationships of the saturn-shaped ascospore-forming, species of the genus WilliopsisZender and related genera based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): The proposal of Komagataeagen. nov. Biosci. Biotech. Biochem. 58: 1236–1244

    Google Scholar 

  • Yamada Y, Matsuda M, Maeda K & Mikata K (1995a) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: The proposal of Komagataellagen. nov. (Saccharomycetaceae). Biosci. Biotechnol. Biochem. 59: 439–444

    Google Scholar 

  • Yamada Y, Suzuki T, Matsuda M & Mikata K (1995b) The phylogeny of Yamadazyma ohmeri(Etchells et Bell) Billon-Grand based on partial sequences of 18S and 26S ribosomal RNAs: the proposal of Kodamaeagen. nov. (Saccharomycetaceae). Biosci. Biotechnol. Biochem. 59: 1172–1174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtzman, C.P., Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73, 331–371 (1998). https://doi.org/10.1023/A:1001761008817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001761008817

Navigation