Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics, gene expression and DNA arrays

Abstract

Experimental genomics in combination with the growing body of sequence information promise to revolutionize the way cells and cellular processes are studied. Information on genomic sequence can be used experimentally with high-density DNA arrays that allow complex mixtures of RNA and DNA to be interrogated in a parallel and quantitative fashion. DNA arrays can be used for many different purposes, most prominently to measure levels of gene expression (messenger RNA abundance) for tens of thousands of genes simultaneously. Measurements of gene expression and other applications of arrays embody much of what is implied by the term ‘genomics’; they are broad in scope, large in scale, and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal types of arrays used in gene expression monitoring.
Figure 2: Messenger RNA abundance levels in different cells, tissues and organisms.
Figure 3: Methods for analysing gene expression data shown for measurements of expression in the cell cycle of S. cerevisiae.
Figure 4: The ‘guilt-by-association’ method for assigning gene function.
Figure 5: Generic oligonucleotide tag arrays for parallel phenotyping of mutant yeast strains.
Figure 6: Comparative genome hybridization using arrays26,106,107.

Similar content being viewed by others

References

  1. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lennon, G. G. & Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7, 314– 317 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kafatos, F. C., Jones, C. W. & Efstratiadis, A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 7, 1541–1552 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gillespie, D. & Spiegelman, S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12, 829–842 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Southern, E. M. et al. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 22, 1368–1373 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, N., Hashida, H., Takahashi, N., Misumi, Y. & Sakaki, Y. High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression . Gene 156, 207–213 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, C. et al. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29, 207–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis . Science 251, 767–773 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Pease, A. C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray . Science 270, 467–470 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Shalon, D., Smith, S. J. & Brown, P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  14. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Bowtell, D. D. Options available—from start to finish—for obtaining expression data by microarray. Nature Genet. 21, 25 –32 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Edman, C. F. et al. Electric field directed nucleic acid hybridization on microchips . Nucleic Acids Res. 25, 4907– 4914 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sosnowski, R. G., Tu, E., Butler, W. F., O'Connell, J. P. & Heller, M. J. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl Acad. Sci. USA 94, 1119–1123 ( 1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gray, D. E., Case-Green, S. C., Fell, T. S., Dobson, P. J. & Southern, E. M. Ellipsometric and interferometric characterization of DNA probes immobilised on a combinatorial array. Langmuir 13, 2833–2842 ( 1997).

    Article  CAS  Google Scholar 

  20. Walt, D. R. Bead-based fiber-optic arrays. Science 287, 451 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Michael, K. L., Taylor, L. C., Schultz, S. L. & Walt, D. R. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 70, 1242–1248 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Ferguson, J. A., Boles, T. C., Adams, C. P. & Walt, D. R. A fiber-optic DNA biosensor microarray for the analysis of gene expression . Nature Biotechnol. 14, 1681– 1684 (1996).

    Article  CAS  Google Scholar 

  23. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65– 73 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. The Chipping forecast. Nature Genet. 21(Suppl.), 1–60 ( 1999).

  26. Wodicka, L., Dong, H., Mittmann, M., Ho, M.-H & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359 –1367 (1997).

    Article  CAS  Google Scholar 

  27. White, K. P., Rifkin, S. A., Hurban, P. & Hogness, D. S. Microarray analysis of Drosophila development during metamorphosis . Science 286, 2179–2184 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Chambers, J. et al. DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J. Virol. 73, 5757–5766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gingeras, T. R. et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic mycobacterium DNA arrays. Genome Res. 8, 435–448 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  30. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675– 1680 (1996).

    Article  CAS  Google Scholar 

  31. Liang, P. & Pardee, A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 ( 1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Shimkets, R. A. et al. Gene expression analysis by transcript profiling coupled to a gene database query. Nature Biotechnol. 17, 798–803 (1999).

    Article  CAS  Google Scholar 

  33. Ivanova, N. B. & Belyavsky, A. V. Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting. Nucleic Acids Res. 23, 2954 –2958 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kato, K. Description of the entire mRNA population by a 3′ end cDNA fragment generated by class IIS restriction enzymes. Nucleic Acids Res. 23, 3685–3690 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bachem, C. W. et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745 –753 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Boucherie, H. et al. Two-dimensional protein map of Saccharomyces cerevisiae : construction of a gene-protein index. Yeast 11 , 601–613 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994 –999 (1999).

    Article  CAS  Google Scholar 

  39. Mann, M. Quantitative proteomics? Nature Biotechnol. 17, 954–955 (1999).

    Article  CAS  Google Scholar 

  40. Oda, Y., Huang, K., Cross, F. R., Cowburn, D. & Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burns, N. et al. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Ross-Macdonald, P., Sheehan, A., Roeder, G. S. & Snyder, M. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 190–195 ( 1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413– 418 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Niedenthal, R. K., Riles, L., Johnston, M. & Hegemann, J. H. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12, 773–786 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Zong, Q., Schummer, M., Hood, L. & Morris, D. R. Messenger RNA translation state: the second dimension of high-throughput expression screening . Proc. Natl Acad. Sci. USA 96, 10632– 10636 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA 96, 13118–13123 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diehn, M., Eisen, M. B., Botstein, D. & Brown, P. O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nature Genet. 25, 58–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Weinstein, J. N. Fishing expeditions. Science 282, 628– 629 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 , 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–510 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Mack, D. H. et al. in Deciphering Molecular Circuitry Using High-Density DNA Arrays (eds Hihich, E. & Croce, E.) 85–108 (Plenum, New York, 1998).

    Google Scholar 

  52. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745– 6750 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227 –235 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236– 244 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, S. B. et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98, 663– 673 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Harkin, D. P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Mei, R. et al. Genome-wide detection of allelic imbalance using human SNPs and high density DNA arrays. Genome Res. (in the press).

  60. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41– 46 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  62. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome . Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418– 421 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907– 2912 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wen, X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    CAS  PubMed  Google Scholar 

  69. Wolfsberg, T. G. et al. Candidate regulatory sequence elements for cell cycle-dependent transcription in Saccharomyces cerevisiae. Genome Res. 9, 775–792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4 , 1293–1301 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Rosania, G. R. et al. Myoseverin: a microtubule binding molecule with novel cellular effects. Nature Biotechnol. 18, 304– 308 (2000).

    Article  CAS  Google Scholar 

  73. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Bonner, R. F. et al. Laser capture microdissection: molecular analysis of tissue . Science 278, 1481–1483 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R. & Liotta, L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, A. M., Doyle, M. V. & Mark, D. F. Quantitation of mRNA by the polymerase chain reaction . Proc. Natl Acad. Sci. USA 86, 9717– 9721 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dulac, C. Cloning of genes from single neurons. Curr. Top. Dev. Biol. 36, 245–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Jena, P. K., Liu, A. H., Smith, D. S. & Wysocki, L. J. Amplification of genes, single transcripts and cDNA libraries from one cell and direct sequence analysis of amplified products derived from one molecule. J. Immunol. Methods 190, 199–213 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  79. Kwoh, D. Y. et al. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl Acad. Sci. USA 86, 1173 –1177 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guatelli, J. C. et al. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl Acad. Sci. USA 87, 7797 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010– 3014 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes . Nature Med. 5, 117–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Cho, R. J. et al. Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95 , 3752–3757 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bulyk, M. L., Gentalen, E., Lockhart, D. J. & Church, G. M. Quantifying DNA-protein interactions by double-stranded DNA arrays. Nature Biotechnol. 17, 573–577 (1999).

    Article  CAS  Google Scholar 

  85. Brent, R. Genomic biology. Cell 100, 169– 183 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. McAdams, H. H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650– 656 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. McAdams, H. H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Winzeler, E. et al. Functional characterization of the Saccharomyces cerevisiae genome by precise deletion and parallel analysis. Science 285, 901–906 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  92. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245– 246 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Roberts, C. J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Ly, D., Lockhart, D. J., Lerner, R. & Schultz, P. G. Mitotic misregulation and human aging. Science 287, 2486–22492 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Cherry, J. M. et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature 387, 67–73 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ball, C. A. et al. Integrating functional genomic information into the Saccharomyces Genome Database. Nucleic Acids Res. 28, 77–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Walsh, S., Anderson, M. & Cartinhour, S. W. ACEDB: a database for genome information. Methods Biochem. Anal. 39, 299–318 (1998).

    CAS  PubMed  Google Scholar 

  100. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27– 30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. The FlyBase Consortium. The FlyBase Database of the Drosophila Genome Projects and community literature. Nucleic Acids Res. 27, 85–88 ( 1999).

  102. Karp, P. D., Riley, M., Paley, S. M., Pellegrini-Toole, A. & Krummenacker, M. EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 27 , 50–53 (1999).

    Article  Google Scholar 

  103. Iyer, V. & Struhl, K. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 93, 5208–5212 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction . Science 285, 1390–1393 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Fan, J.-B et al. Parallel genotyping of human SNPs using generic oligonucleotide tag arrays. Genome Res. (in the press).

  106. Lashkari, D. A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl Acad. Sci. USA 94, 13057–13062 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Winzeler, E., Lee, B., McCusker, J. & Davis, R. Whole genome genetic typing using high-density oligonucleotide arrays. Parasitology 118, S73–S80 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  108. Winzeler, E. A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Troesch, A. et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J. Clin. Microbiol. 37, 49–55 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Fodor, M. Chee, R. Davis, L. Stryer, E. Lander, H. Dong, L. Wodicka, R. Cho, D. Giang, P. Zarrinkar, C. Barlow, J. Gentry, P. Schultz and R. Abagyan for their on-going help and patience, and B. Geierstanger, G. Hampton and S. Kay for helpful comments and a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, D., Winzeler, E. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000). https://doi.org/10.1038/35015701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015701

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing