Skip to main content
Log in

Nitrogen catabolite repression in Saccharomyces cerevisiae

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5′ GATAA 3′. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine, GABA, and allantoine. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some protease, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell.

In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grenson, M. (1992) Amino acid transporters in yeast: structure, function and regulation. In Molecular aspects of transport proteins. (Edited by Neuberger A. and Van Deenen L. L. M.), p. 219–245. Elsevier Science Publishers B. V.,

  2. Messenguy, F., Colin, D., and Ten Have, J.-P. (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effect on metabolic control. Eur. J. Biochem. 108, 439–447.

    PubMed  CAS  Google Scholar 

  3. Mitchell, A. P. and Magasanik, B. (1983) Purification and properties of glutamine synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 258, 119–124.

    PubMed  CAS  Google Scholar 

  4. Mitchell, A. P. (1985) The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase. Genetics 111, 243–258.

    PubMed  CAS  Google Scholar 

  5. Bogonez, E., Satrustegui, J. and Machado, A. (1985) Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae. J. Gen. Microbiol. 131, 1425–1432.

    PubMed  CAS  Google Scholar 

  6. Avendano, A., Deluna, A., Olivera, H., Valenzuela, L., and Gonzalez, A. (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 179, 5594–5597.

    PubMed  CAS  Google Scholar 

  7. Wilkinson, B. M., James, C. M., and Walmsley, R. M. (1996) Partial deletion of the Saccharomyces cerevisiae GDH3 gene results in novel starvation phenotypes. Microbiology. 142, 1667–1673.

    Article  PubMed  CAS  Google Scholar 

  8. Miller, S. M. and Magasanik, B. (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172, 4927–4935.

    PubMed  CAS  Google Scholar 

  9. Grenson, M., Dubois, E., Piotrowska, M., Drillien, R., and Aigle, M. (1974) Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol. Gen. Genet. 128, 73–85.

    PubMed  CAS  Google Scholar 

  10. Marini, A. M., Soussi Boudekou, S., Vissers, S., and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell Biol. 17, 4282–4293.

    PubMed  CAS  Google Scholar 

  11. Coschigano P.W., Miller S.M. and Magasanik B. (1991) Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae. Mol. Cell Biol. 11, 4455–4465.

    PubMed  CAS  Google Scholar 

  12. Cooper T.G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In The molecular biology of the yeast Saccharomyces: metabolism and gene expression. (Edited by Strathern J.N., Jones E.W. and Broach J.), p. 39–101.

  13. Coffman J.A., Rai R., Loprete D.M., Cunningham T., Svetlov V. and Cooper T.G. (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179, 3416–3429.

    PubMed  CAS  Google Scholar 

  14. Bysani N., Daugherty J.R. and Cooper T.G. (1991) Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173, 4977–4982.

    PubMed  CAS  Google Scholar 

  15. Cunningham T.S. and Cooper T.G. (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URSGATA). J. Bacteriol. 175, 5851–5861.

    PubMed  CAS  Google Scholar 

  16. Cunningham T.S., Svetlov V.V., Rai R., Smart W. and Cooper T.G. (1996) Gln3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J. Bacteriol. 178, 3470–3479.

    PubMed  CAS  Google Scholar 

  17. Minehart P.L. and Magasanik B. (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell Biol. 11, 6216–6228.

    PubMed  CAS  Google Scholar 

  18. Blinder D. and Magasanik B. (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J. Bacteriol. 177, 4190–4193.

    PubMed  CAS  Google Scholar 

  19. Rai R., Genbauffe F.S., Sumrada R.A. and Cooper T.G. (1989) Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell Biol. 9, 602–608.

    PubMed  CAS  Google Scholar 

  20. Donahue, T. F., Daves, R. S., Lucchini, G., and Fink, G. R. (1983) A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32, 89–98.

    PubMed  CAS  Google Scholar 

  21. Sarokin, L. and Carlson, M. (1986) Short repeated elements in the upstream regulatory region of the SUC2 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 2324–2333.

    PubMed  CAS  Google Scholar 

  22. Thiele, D. J. and Hamer, D. H. (1986) Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallothionein gene. Mol. Cell. Biol. 6, 1158–1163.

    PubMed  CAS  Google Scholar 

  23. Rai, R., Daugherty, J. R., and Cooper, T. G. (1995) UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast. 11, 247–260.

    PubMed  CAS  Google Scholar 

  24. Magasanik, B. (1992) Regulation of nitrogen utilization. In The molecular and cellular biology of the yeast Saccharomyces. (Edited by Broach I., James R. and Pringle J.), p. 283. CSHL Press,

  25. Stanbrough, M., Rowen, D. W., and Magasanik, B. (1995) Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. U. S. A. 92, 9450–9454.

    PubMed  CAS  Google Scholar 

  26. Svetlov, V. and Cooper, T. G. (1997) The minimal transactivation region of S. cerevisiae Gln3 is localized to 13 amino acids. J. Bacteriology 179, 7644–7652.

    CAS  Google Scholar 

  27. Miller, S. M. and Magasanik, B. (1991) Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 6229–6247.

    PubMed  CAS  Google Scholar 

  28. Blinder, D., Coschigano, P. W., and Magasanik, B. (1996) Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734–4736.

    PubMed  CAS  Google Scholar 

  29. Coffman, J. A., Rai, R. and Cooper, T. G. (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177, 6910–6918.

    PubMed  CAS  Google Scholar 

  30. Coffman, J. A., el Berry, H. M., and Cooper, T. G. (1994) The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J. Bacteriol. 176, 7476–7483.

    PubMed  CAS  Google Scholar 

  31. Courchesne, W. E. and Magasanik, B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713.

    PubMed  CAS  Google Scholar 

  32. Coschigano, P. W. and Magasanik, B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol. Cell Biol. 11, 822–832.

    PubMed  CAS  Google Scholar 

  33. Coffman, J. A., Rai, R., Cunningham, T., Svetlov, V., and Cooper, T. G. (1996) Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 847–858.

    PubMed  CAS  Google Scholar 

  34. Masison, D. C. and Wickner, R. B. (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95.

    PubMed  CAS  Google Scholar 

  35. Kushnirov, V. V., Ter Avanesian, M. D., and Smirno, V. N. (1995) [Structure and functional similarity of yeast Sup35p and Ure2p proteins to mammalian prions] Strukturnoe i funktsional’noe skhodstvo belkov Sup35p i Ure2p drozhzhei s prionami mlekopitaiushchikh. Mol. Biol. Mosk. 29, 750–755.

    PubMed  CAS  Google Scholar 

  36. Cox, B. (1994) Cytoplasmic inheritance. Prion-like factors in yeast. Curr. Biol. 4, 744–748.

    PubMed  CAS  Google Scholar 

  37. Weissmann, C. (1994) The prion connection: now in yeast? [comment]. Science 264, 528–530.

    PubMed  CAS  Google Scholar 

  38. Wickner, R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae [see comments]. Science 264, 566–569.

    PubMed  CAS  Google Scholar 

  39. Stanbrough, M. and Magasanik, B. (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J.Bacteriol. 177, 94–102.

    PubMed  CAS  Google Scholar 

  40. Rowen, D. W., Esiobu, N., and Magasanik, B. (1997) Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179, 3761–3766.

    PubMed  CAS  Google Scholar 

  41. Cunningham, T. S. and Cooper, T. G. (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression [published erratum appears in Mol Cell Biol 1992 May;12(5):2454]. Mol. Cell Biol. 11, 6205–6215.

    PubMed  CAS  Google Scholar 

  42. Coornaert, D., Vissers, S., Andre, B., and Grenson, M. (1992) The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr. Genet. 21, 301–307.

    PubMed  CAS  Google Scholar 

  43. Daugherty, J. R., Rai, R., el Berry, H. M., and Cooper, T. G. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 175, 64–73.

    PubMed  CAS  Google Scholar 

  44. Soussi Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J. C., and Andre, B. (1997) Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol. Microbiol. 23, 1157–1168.

    PubMed  CAS  Google Scholar 

  45. Minehart, P. L. and Magasanik, B. (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J. Bacteriol. 174, 1828–1836.

    PubMed  CAS  Google Scholar 

  46. Mitchell, A. P. and Magasanik, B. (1984) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2758–2766.

    PubMed  CAS  Google Scholar 

  47. Benjamin, P. M., Wu, J. I., Mitchell, A. P., and Magasanik B. (1989) Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol. Gen. Genet. 217, 370–377.

    PubMed  CAS  Google Scholar 

  48. Legrain, C., Vissers, S., Dubois, E., Legrain, M., and Wiame, J. M. (1982) Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur. J. Biochem. 123, 611–616.

    Article  PubMed  CAS  Google Scholar 

  49. Mitchell, A. P. and Magasanik, B. (1984) Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2767–2773.

    PubMed  CAS  Google Scholar 

  50. Boles, E., Lehnert, W., and Zimmermann, F. K. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem. 217, 469–477.

    PubMed  CAS  Google Scholar 

  51. Luche, R. M., Sumrada, R., and Cooper, T. G. (1990) A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell Biol. 10, 3884–3895.

    PubMed  CAS  Google Scholar 

  52. Sumrada, R. A. and Cooper, T. G. (1987) Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. U. S. A. 84, 3997–4001.

    PubMed  CAS  Google Scholar 

  53. Jauniaux, J. C. and Grenson, M. (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur. J. Biochem. 190, 39–44.

    PubMed  CAS  Google Scholar 

  54. Hein, C. and Andre, B. (1997) A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol. Microbiol. 24, 607–616.

    PubMed  CAS  Google Scholar 

  55. Hicke, L. and Riezman, H. (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287.

    PubMed  CAS  Google Scholar 

  56. Rohrer, J., Benedetti, H., Zanolari, B., and Riezman, B. (1993) Identification of a novel sequence mediating regulated endosytosis of the G protein-coupled alpha-pheromone receptor in yeast. Mol. Cell. Biol. 4, 511–521.

    CAS  Google Scholar 

  57. Grenson, M. and Acheroy, B. (1982) Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Localisation of the cis-acting dominant pgr regulatory mutation in the structural gene of this permease. Mol. Gen. Genet. 188, 261–265.

    PubMed  CAS  Google Scholar 

  58. Grenson, M. (1983) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133, 135–139.

    PubMed  CAS  Google Scholar 

  59. Hein, C., Springael, J. Y., Volland, C., Haguenauer Tsapis, R., and Andre, B. (1995) NP11, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18, 77–87.

    PubMed  CAS  Google Scholar 

  60. Galan, J. M., Moreau, V., Andre, B., Volland, C., and Haguenauer Tsapis, R. (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952.

    PubMed  CAS  Google Scholar 

  61. Grenson, M. and Dubois, E. (1982) Pleiotropic deficiency in nitrogen-uptake systems and derepression of nitrogen-catabolic enzymes in npr-1 mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 121, 643–647.

    PubMed  CAS  Google Scholar 

  62. Grenson, M. (1983) Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133, 141–144.

    PubMed  CAS  Google Scholar 

  63. Vandenbol, M., Jauniaux, J. C., and Grenson, M. (1990) The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol. Gen. Genet. 222, 393–399.

    PubMed  CAS  Google Scholar 

  64. Vandenbol, M., Jauniaux, J. C., Vissers, S., and Grenson, M. (1987) Isolation of the NPR1 gene responsible for the reactivation of ammonia-sensitive amino-acid permeases in Saccharomyces cerevisiae. RNA analysis and gene dosage effects. Eur. J. Biochem. 164, 607–612.

    PubMed  CAS  Google Scholar 

  65. Courchesne, W. E. and Magasanik, B. (1983) Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae. Mol. Cell Biol. 3, 672–683.

    PubMed  CAS  Google Scholar 

  66. Sophianopoulou, V. and Diallinas, G. (1993) AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae. Mol. Microbiol. 8, 167–178.

    PubMed  CAS  Google Scholar 

  67. Stanbrough, M. and Magasanik, B. (1996) Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J. Bacteriol. 178, 2465–2468.

    PubMed  CAS  Google Scholar 

  68. Coffman, J., Rai, R., Cunningham, T., Svetlov, V., and Cooper, T. G. (1996) NCR-sensitive transport gene expression in S. cerevisiae is controlled by a branched regulatory pathway consisting of multiple NCR-responsive activator proteins. Folia Microbiol. Praha. 41, 85–86.

    PubMed  CAS  Google Scholar 

  69. Marini, A. M., Vissers, S., Urrestarazu, A., and Andre, B. (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13, 3456–3463.

    PubMed  CAS  Google Scholar 

  70. Bisson, L. F. (1991) Influence of nitrogen on yeast and fermentation of grapes. In International sympesium on nitrogen in grapes and wine. (Edited by Rantz J.), p. 78.

  71. Brandriss, M. C. and Magasanik, B. (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J. Bacteriol. 140, 498–503.

    PubMed  CAS  Google Scholar 

  72. Marczak, J. E. and Brandriss, M. C. (1989) Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator. Mol. Cell Biol. 9, 4696–4705.

    PubMed  CAS  Google Scholar 

  73. Wang, S. S. and Brandriss, M. C. (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol. Cell Biol. 6, 2638–2645.

    PubMed  CAS  Google Scholar 

  74. Wang, S. S. and Brandriss, M. C. (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol. Cell Biol. 7, 4431–4440.

    PubMed  CAS  Google Scholar 

  75. Brandriss, M. C. (1983) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene. Mol. Cell Biol. 3, 1846–1856.

    PubMed  CAS  Google Scholar 

  76. Krzywicki, K. A. and Brandriss, M. C. (1984) Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2837–2842.

    PubMed  CAS  Google Scholar 

  77. Brandriss, M. C. and Krzywicki, K. A. (1986) Aminoterminal fragments of delta 1-pyrroline-5-carboxylate dehydrogenase direct beta-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae. Mol. Cell Biol. 6, 3502–3512.

    PubMed  CAS  Google Scholar 

  78. Murakami, H., Pain, D., and Blobel, G. (1988) 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J. Cell Biol. 107, 2051–2057.

    PubMed  CAS  Google Scholar 

  79. Jauniaux, J. C., Vandenbol, M., Vissers, S., Broman, K., and Grenson, M. (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur. J. Biochem. 164, 601–606.

    PubMed  CAS  Google Scholar 

  80. Vandenbol, M., Jauniaux, J. C., and Grenson, M. (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline- permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83, 153–159.

    PubMed  CAS  Google Scholar 

  81. Brandriss, M. C. (1987) Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 117, 429–435.

    PubMed  CAS  Google Scholar 

  82. Marczak, J. E. and Brandriss, M. C. (1991) Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell Biol. 11, 2609–2619.

    PubMed  CAS  Google Scholar 

  83. Siddiqui, A. H. and Brandriss, M. C. (1988) A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box. Mol. Cell Biol. 8, 4634–4641.

    PubMed  CAS  Google Scholar 

  84. Siddiqui, A. H. and Brandriss, M. C. (1989) The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Mol. Cell Biol. 9, 4706–4712.

    PubMed  CAS  Google Scholar 

  85. Reece, R. J. and Ptashne, M. (1993) Determinants of binding-site specificity among yeast C6 zinc clusterproteins. Science 261, 909–911.

    PubMed  CAS  Google Scholar 

  86. Marmorstein, A. (1992) Nature 356, 408–414.

    PubMed  CAS  Google Scholar 

  87. des Etages, S. A., Falvey, D. A., Reece, R. J., and Brandriss, M. C. (1996) Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142, 1069–1082.

    PubMed  Google Scholar 

  88. Axelrod, J. D., Majors, J., and Brandriss, M. C. (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol. Cell Biol. 11, 564–567.

    PubMed  CAS  Google Scholar 

  89. Yamashita, I. (1993) Isolation and characterization of the SUD1 gene, which encodes a global repressor of core promoter activity in Saccharomyces cerevisiae. Mol. Gen. Genet. 241, 616–626.

    PubMed  CAS  Google Scholar 

  90. Rousselet, G., Simon, M., Ripoche, P., and Buhler J. M. (1995) A second nitrogen permease regulator in Saccharomyces cerevisiae. FEBS Lett. 359, 215–219.

    PubMed  CAS  Google Scholar 

  91. Ramos, F., el Guezzar, M., Grenson, M., and Wiame, J. M. (1985) Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 149, 401–404.

    PubMed  CAS  Google Scholar 

  92. Andre, B. and Jauniaux, J. C. (1990) Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. Nucleic. Acids. Res. 18, 3049–3049.

    PubMed  CAS  Google Scholar 

  93. Grenson, M., Muyldermans, F., Broman, K., and Vissers, S. (1987) 4-aminobutyric acid (GABA) uptake in Bakers yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA-specifiec permease integrated into the GABA-catabolic pathway. Life. sci. adv. 6, 35–39.

    Google Scholar 

  94. Andre, B., Hein, C., Grenson, M., and Jauniaux, J. C. (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol. Gen. Genet. 237, 17–25.

    PubMed  CAS  Google Scholar 

  95. Andre, B. (1990) The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. Mol. Gen. Genet. 220, 269–276.

    PubMed  CAS  Google Scholar 

  96. Evans and Hollenberg (1988) Gilt by association. Cell 52, 1–3.

    PubMed  CAS  Google Scholar 

  97. Bricmont, P. A., Daugherty, J. R., and Cooper, T. G. (1991) The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 1161–1166.

    PubMed  CAS  Google Scholar 

  98. Vissers, S., Andre, B., Muyldermans, F., and Grenson, M. (1990) Induction of the 4-aminobutyrate and urea-catabolic pathways in Saccharomyces cerevisiae. Specific and common transcriptional regulators. Eur. J. Biochem. 187, 611–616.

    PubMed  CAS  Google Scholar 

  99. Cunningham, T. S., Dorrington, R. A., and Cooper, T. G. (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J. Bacteriol. 176, 4718–4725.

    PubMed  CAS  Google Scholar 

  100. Talibi, D., Grenson, M. and Andre, B. (1995) Cis-and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic. Acids. Res. 23, 550–557.

    PubMed  CAS  Google Scholar 

  101. van Vuuren, H. J., Daugherty, J. R., Rai, R., and Cooper, T. G. (1991) Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae. J. Bacteriol. 173, 7186–7195.

    PubMed  Google Scholar 

  102. Yoo, H. S. and Cooper, T. G. (1989) The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene’s expression. Mol. Cell Biol. 9, 3231–3243.

    PubMed  CAS  Google Scholar 

  103. Bricmont, P. A. and Cooper, T. G. (1989) A gene product needed for induction of allantoin system genes in Saccharomyces cerevisiae but not for their transcriptional activation. Mol. Cell Biol. 9, 3869–3877.

    PubMed  CAS  Google Scholar 

  104. Cooper, T. G., Rai, R., and Yoo, H. S. (1989) Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol. Cell Biol. 9, 5440–5444.

    PubMed  CAS  Google Scholar 

  105. Turoscy, V. and Cooper, T. G. (1982) Pleiotropic control of five eucaryotic genes by multiple regulatory elements. J. Bacteriol. 151, 1237–1246.

    PubMed  CAS  Google Scholar 

  106. Olive, M. G., Daugherty, J. R., and Cooper, T. G. (1991) DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. J. Bacteriol. 173, 255–261.

    PubMed  CAS  Google Scholar 

  107. Hennaut, C. (1981) L-ornithine transaminase synthesis in Saccharomyces Cerevisiae: induction by allophanate, intermediate and inducer of the urea degradative pathway adds to arginine induction. Curr. genet. 4, 69–72.

    CAS  Google Scholar 

  108. Vissers, S., Andre, B., Muyldermans, F., and Grenson, M. (1989) Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid- specific permease in Saccharomyces cerevisiae. Eur. J. Biochem. 181, 357–361.

    PubMed  CAS  Google Scholar 

  109. Andre, B., Talibi, D., Doudekou, S. S., Hein, C., Vissers, S., and Coornaert, D. (1995) Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic. Acids. Res. 23, 558–564.

    PubMed  CAS  Google Scholar 

  110. Sumrada, R. A. and Cooper, T. G. (1984) Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J. Bacteriol. 160, 1078–1087.

    PubMed  CAS  Google Scholar 

  111. Sumrada, R. A. and Cooper, T. G. (1982) Mol. Cell. Biol. 2, 1514–1523.

    PubMed  CAS  Google Scholar 

  112. Degols, G. (1987) Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis. Eur. J. Biochem. 169, 193–200.

    PubMed  CAS  Google Scholar 

  113. Degols, G., Jauniaux, J. C., and Wiame, J. M. (1987) Molecular characterization of transposable-elementassociated mutations that lead to constitutive L-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur. J. Biochem. 165, 289–296.

    PubMed  CAS  Google Scholar 

  114. Opekarova, M. and Kubin, J. (1997) On the unidirectionality of arginine uptake in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 152, 261–267.

    Article  PubMed  CAS  Google Scholar 

  115. Opekarova, M., Caspari, T., and Tanner, W. (1993) Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1. Eur. J. Biochem. 211, 683–688.

    PubMed  CAS  Google Scholar 

  116. Hoffmann, W. (1985) Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J. Biol. Chem. 260, 11831–11837.

    PubMed  CAS  Google Scholar 

  117. Cooper, T. G., Kovari, L., Sumrada, R. A., Park, H. D., Luche, R. M., and Kovari, I. (1992) Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion. J. Bacteriol. 174, 48–55.

    PubMed  CAS  Google Scholar 

  118. Hoffmann, W. (1987) CAN1-SUC2 gene fusion studies in Saccharomyces cerevisiae. Mol. Gen. Genet. 210, 277–281.

    PubMed  CAS  Google Scholar 

  119. Kovari, L. Z., Kovari, I., and Cooper, T. G. (1993) Participation of RAP1 protein in expression of the Saccharomyces cerevisiae arginase (CAR1) gene. J. Bacteriol. 175, 941–951.

    PubMed  CAS  Google Scholar 

  120. Kovari, L. Z. and Cooper, T. G. (1991) Participation of ABF-1 protein in expression of the Saccharomyces cerevisiae CAR1 gene. J. Bacteriol. 173, 6332–6338.

    PubMed  CAS  Google Scholar 

  121. Kovari, L., Sumrada, R., Kovari, I., and Cooper, T. G. (1990) Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5087–5097.

    PubMed  CAS  Google Scholar 

  122. Dubois, E. and Messenguy, F. (1997) Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p. Mol. Gen. Genet. 253, 568–580.

    PubMed  CAS  Google Scholar 

  123. Smart, W. C., Coffman, J. A., and Cooper, T. G. (1996) Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (Arginase) promotor in response to multible environmental signals. Mol. Cell. Biol. 16, 5876–5887.

    PubMed  CAS  Google Scholar 

  124. Bossinger, J. and Cooper, T. G. (1977) Molecular events associated with induction of arginase in Saccharomyces cerevisiae. J. Bacteriol. 131, 163–173.

    PubMed  CAS  Google Scholar 

  125. Kovari, L. Z., Fourie, M., Park, H. D., Kovari, I. A., van Vuuren, H. J., and Cooper T. G. (1993) Analysis of the inducer-responsive CAR1 upstream activation sequence (UASI) and the factors required for its operation. Yeast. 9, 835–845.

    PubMed  CAS  Google Scholar 

  126. Viljoen, M., Kovari, L. Z., Kovari, I. A., Park, H. D., van Vuuren, H. J., and Cooper, T. G. (1992) Tripartite structure of the Saccharomyces cerevisiae arginase (CAR1) gene inducer-responsive upstream activation sequence. J. Bacteriol. 174, 6831–6839.

    PubMed  CAS  Google Scholar 

  127. Messenguy, F. (1991) Mol. Cell. Biol. 11, 2852–2863.

    PubMed  CAS  Google Scholar 

  128. Messenguy, F. and Dubois, E. (1993) Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 2586–2592.

    PubMed  CAS  Google Scholar 

  129. Cunin, R., Dubois, E., Tinel, K., and Crabeel, M. (1986) Positive and negative regulation of CAR1 expression in S. cerevisiae. Mol. Gen. Genet. 205, 170–175.

    CAS  Google Scholar 

  130. Shore and Sharrocks (1995) The MADS box family of transcription factors. Eur. J. Biochem. 229, 1–13.

    PubMed  CAS  Google Scholar 

  131. Cooper, T. G., Ferguson, D., Rai, R., and Bysani, N. (1990) The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol. 172, 1014–1018.

    PubMed  CAS  Google Scholar 

  132. Sumrada, R. A. and Cooper, T. G. (1985) Point mutation generates constitutive expression of an inducible eukaryotic gene. Proc. Natl. Acad. Sci. U. S. A. 82, 643–647.

    PubMed  CAS  Google Scholar 

  133. Deschamps, J., Dubois, E., and Wiame, J. M. (1979) L-Ornithine transaminase synthesis in Saccharomyces cerevisiae: regulation by inducer exclusion. Mol. Gen. Genet. 174, 225–232.

    PubMed  CAS  Google Scholar 

  134. Kunzler, M., Springer, C., and Braus, G. H. (1995) Activation and repression of the yeast ARO3 gene by global transcription factors. Mol. Microbiol. 15, 167–178.

    PubMed  CAS  Google Scholar 

  135. Carmen, A. A. and Holland, M. J. (1994) The upstream repression sequence from the yeast enolase gene ENO1 is a complex regulatory element that binds multiple trans-acting factors including REB1. J. Biol. Chem. 269, 9790–9797.

    PubMed  CAS  Google Scholar 

  136. Strich, R., Surosky, R. T., Steber, C., Dubois, E., Messenguy, F., and Esposito, R. E. (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev. 8, 796–810.

    PubMed  CAS  Google Scholar 

  137. Park, H. D., Luche, R. M., and Cooper, T. G. (1992) The yeast UME6 gene product is required for transcriptional repression mediated by the CAR1 URS1 repressor binding site. Nucleic. Acids. Res. 20, 1909–1915.

    PubMed  CAS  Google Scholar 

  138. Luche, R. M., Smart, W. C. and Cooper, T. G. (1992) Purification of the heteromeric protein binding to the URS1 transcriptional repression site in Saccharomyces cerevisiae [published erratum appears in Proc Natl Acad Sci U S A 1992 Nov 15;89(22):11107]. Proc. Natl. Acad. Sci. U. S. A. 89, 7412–7416.

    PubMed  CAS  Google Scholar 

  139. Luche, R. M., Smart, W. C., Marion, T., Tillman, M., Sumrada, R. A., and Cooper, T. G. (1993) Saccharomyces cerevisiae BUF protein binds to sequences participating in DNA replication in addition to those mediating transcriptional repression (URS1) and activation. Mol. Cell Biol. 13, 5749–5761.

    PubMed  CAS  Google Scholar 

  140. Klug, A. and Rhodes, D. (1987) “Zinc fingers”: a novel protein motif for nucleic acid recognition. Trends biochem. sci. 12, 464–469.

    CAS  Google Scholar 

  141. Messenguy, F. and Dubois, E. (1983) Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast. Mol. Gen. Genet. 189, 148–156.

    PubMed  CAS  Google Scholar 

  142. Jacobs, E., Dubois, E., Hennaut, C., and Wiame, J.-M. (1981) Positive regulatory elements involden in urea amidolyase and urea uptake induction in S. cerevisiae. Curr. genet. 4, 13–18.

    CAS  Google Scholar 

  143. Jacobs, E., Dubois, E., and Wiame, J. M. (1985) Regulation of ureaamidolyase synthesis in Saccharomyces cerevisiae, RNA analysis, and cloning of the positive regulatory gene DURM. Curr. Genet. 9, 333–339.

    PubMed  CAS  Google Scholar 

  144. ElBerry, H. M., Majumdar, M. L., Cunningham, T. S., Sumrada, R. A., and Cooper, T. G. (1993) Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J. Bacteriol. 175, 4688–4698.

    PubMed  CAS  Google Scholar 

  145. Cooper, T. G. and Sumrada, R. (1975) Urea transport in Saccharomyces cerevisiae. J. Bacteriol. 121, 571–576.

    PubMed  CAS  Google Scholar 

  146. Sumrada, R., Gorski, M., and Cooper, T. (1976) Urea transport-defective strains of Saccharomyces cerevisiae. J. Bacteriol. 125, 1048–1056.

    PubMed  CAS  Google Scholar 

  147. Cooper, T. G., McKelvey, J., and Sumrada, R. (1979) Oxalurate transport in Saccharomyces cerevisiae. J. Bacteriol. 139, 917–923.

    PubMed  CAS  Google Scholar 

  148. Genbauffe, F. S. and Cooper, T. G. (1986) Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol. Cell Biol. 6, 3954–3964.

    PubMed  CAS  Google Scholar 

  149. Dorrington, R. A. and Cooper, T. G. (1993) The DAL82 protein of Saccharomyces cerevisiae binds to the DAL upstream induction sequence (UIS). Nucleic. Acids. Res. 21, 3777–3784.

    PubMed  CAS  Google Scholar 

  150. Chisholm, G. E. and Cooper, T. G. (1992) Ty insertions upstream and downstream of native DUR1,2 promoter elements generate different patterns of DUR1,2 expression in Saccharomyces cerevisiae. J. Bacteriol. 174, 2548–2559.

    PubMed  CAS  Google Scholar 

  151. Chisholm, V. T., Lea, H. Z., Rai, R., and Cooper, T. G. (1987) Regulation of allantoate transport in wildtype and mutant strains of Saccharomyces cerevisiae. J. Bacteriol. 169, 1684–1690.

    PubMed  CAS  Google Scholar 

  152. Hartig, A., Simon, M. M., Schuster, T., Daugherty, J. R., Yoo, H. S., and Cooper, T. G. (1992) Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic. Acids. Res. 20, 5677–5686.

    PubMed  CAS  Google Scholar 

  153. Sumrada, R., Zacharski, C. A., Turoscy, V., and Cooper, T. G. (1978) Induction and inhibition of the allantoin permease in Saccharomyces cerevisiae. J. Bacteriol. 135, 498–510.

    PubMed  CAS  Google Scholar 

  154. Yoo, H. S., Cunningham, T. S., and Cooper, T. G. (1992) The allantoin and uracil permease gene sequences of Saccharomyces cerevisiae are nearly identical. Yeast. 8, 997–1006.

    PubMed  CAS  Google Scholar 

  155. Sumrada, R. and Cooper, T. G. (1974) Oxaluric acid: a non-metabolizable inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae. J. Bacteriol. 117, 1240–1247.

    PubMed  CAS  Google Scholar 

  156. Cooper, T. G., Chisholm, V. T., Cho, H. J., and Yoo, H. S. (1987) Allantoin transport in Saccharomyces cerevisiae is regulated by two induction systems. J. Bacteriol. 169, 4660–4667.

    PubMed  CAS  Google Scholar 

  157. Rai, R., Genbauffe, F. S., and Cooper, T. G. (1988) Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J. Bacteriol. 170, 266–271.

    PubMed  CAS  Google Scholar 

  158. Rai, R., Genbauffe, F., Lea, H. Z., and Cooper, T. G. (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169, 3521–3524.

    PubMed  CAS  Google Scholar 

  159. Buckholz, R. G. and Cooper, T. G. (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae [published erratum appears in Yeast 1992 Mar;8(3):239]. Yeast. 7, 913–923.

    PubMed  CAS  Google Scholar 

  160. Yoo, H. S. and Cooper, T. G. (1991) Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae. Gene 104, 55–62.

    PubMed  CAS  Google Scholar 

  161. Yoo, H. S. and Cooper, T. G. (1991) The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae. Yeast. 7, 693–698.

    PubMed  CAS  Google Scholar 

  162. Yoo, H. S., Genbauffe, F. S., and Cooper, T. G. (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol. Cell Biol. 5, 2279–2288.

    PubMed  CAS  Google Scholar 

  163. Fernandez, E., Fernandez, M., and Rodicio, R. (1993) Two structural genes are encoding malate synthase isoenzymes in Saccharomyces cerevisiae. FEBS Lett. 320, 271–275.

    PubMed  CAS  Google Scholar 

  164. Spormann, D. O., Heim, J., and Wolf, D. H. (1991) Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme. Eur. J. Biochem. 197, 339–405.

    Google Scholar 

  165. Bordallo, j., Bordallo, c., Gascon, S., and Suarez-Rendueles, P. (1991) Molecular cloning and sequencing of genomic DNA encoding yeast vacuolar carboxypeptidase yscS. FEBS Lett. 283, 27–32.

    PubMed  CAS  Google Scholar 

  166. Bordallo, J. and Suarez-Rendueles, P. (1995) Cis and trans-acting regulatory elements required for regulation of the CPS1 gne in Saccharomyces cerevisiae. Mol. Gen. Genet. 246, 580–589.

    PubMed  CAS  Google Scholar 

  167. Coffman, J. A. and Cooper, T. G. (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J. Bacteriol. 179, 5609–5613.

    PubMed  CAS  Google Scholar 

  168. Naik, R. R., Nebes, V., and Jones, E. W. (1997) Regulation of the peptidase B structual gene PRB1 in Saccharomyces cerevisiae. J. Bacteriology 179, 1469–1474.

    CAS  Google Scholar 

  169. Cueva, R., Garcia-Alvarez, N., and Suarez-Rendueles, P. (1989) Yeast vacuolar aminopeptidase yscI. isolation and regulation of the APE1(LAP4) structual gene. FEBS Lett. 259, 125–129.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Hofman-Bang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofman-Bang, J. Nitrogen catabolite repression in Saccharomyces cerevisiae . Mol Biotechnol 12, 35–71 (1999). https://doi.org/10.1385/MB:12:1:35

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:12:1:35

Index Entries

Navigation