Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. II: Classification of Canadian and Czech ice wines using statistical evaluation of the data

J Chromatogr A. 2007 Apr 20;1147(2):224-40. doi: 10.1016/j.chroma.2007.02.052. Epub 2007 Feb 21.

Abstract

The previously developed and optimized headspace solid-phase microextraction (HS-SPME)-GC-time-of-flight (TOF) MS analytical method for the determination of compounds with a wide range of polarities and volatilities was successfully used in this study to characterize and classify a large set of ice wines according to their origin, grape variety and oak or stainless steel fermentation/ageing conditions, based on a statistical evaluation (principal component analysis (PCA)) of the measured data. More than 130 ice wine samples collected directly from Canadian and Czech wine producers were analyzed in this study. The SPME step was beneficially carried out utilizing the new-generation super elastic divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50 microm/30 microm fiber assembly. One fiber was used for the whole sequence of ice wine samples, control and blank experiments, which consisted of more than 600 individual extraction/injection cycles. Utilizing the high-speed TOF analyzer, full spectral information within the range of 35-450 u was collected for the entire GC run (as short as 4.5 min) without compromising in the detection sensitivity, as compared to other scanning mass analyzers operated in selected ion monitoring or MS(n) mode to achieve similar sensitivity. The identification of analytes was performed by a combination of the linear temperature-programmed retention index (LTPRI) approach with the comparison of the obtained spectra with three libraries included in the ChromaTOF software. A total of 201 peaks were tentatively assigned as ice wine aroma components and 58 of those compounds were evaluated in all of the examined samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gas Chromatography-Mass Spectrometry / methods*
  • Volatilization
  • Wine / analysis*