Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Volume
    • AJEV and Catalyst Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
      • Proprietary Rights Notice for AJEV Online
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
  • Help
  • Login
  • ASEV MEMBER LOGIN

User menu

  • Log in

Search

  • Advanced search
American Journal of Enology and Viticulture
  • Log in
  • Follow ajev on Twitter
  • Follow ajev on Linkedin
American Journal of Enology and Viticulture

Advanced Search

  • Home
  • Content
    • Current Volume
    • AJEV and Catalyst Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
  • Help
  • Login
  • ASEV MEMBER LOGIN
Article

Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine

John C. Danilewicz, John T. Seccombe, Jonathan Whelan
Am J Enol Vitic. June 2008 59: 128-136; published ahead of print June 02, 2008 ; DOI: 10.5344/ajev.2008.59.2.128
John C. Danilewicz
144 Sandwich Road, Ash, Canterbury, Kent CT3 2AF, UK, and2Department of Wine, Plumpton College (University of Brighton), Ditchling Road, Plumpton, Nr Lewes, East Sussex BN7 3AE, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • For correspondence: jdanilewicz@btconnect.com
John T. Seccombe
144 Sandwich Road, Ash, Canterbury, Kent CT3 2AF, UK, and2Department of Wine, Plumpton College (University of Brighton), Ditchling Road, Plumpton, Nr Lewes, East Sussex BN7 3AE, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Jonathan Whelan
144 Sandwich Road, Ash, Canterbury, Kent CT3 2AF, UK, and2Department of Wine, Plumpton College (University of Brighton), Ditchling Road, Plumpton, Nr Lewes, East Sussex BN7 3AE, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The interaction of oxygen, sulfur dioxide, and 4-methylcatechol (4-MeC) was studied in a model wine containing catalytic concentrations of iron and copper in order to provide further evidence that when a catechol and oxygen interact, hydrogen peroxide and a quinone are formed, both of which react with SO2. The aerial oxidation of the catechol in the presence of benzenesulfinic acid (BSA) slowly produced the BSA-quinone adduct in high yield. It was also quickly prepared by adding ferric chloride, demonstrating that the quinone is cleanly produced in this model wine and that the catechol is rapidly oxidized by Fe(III) ions. This reaction is important in the catalytic function of the metal. The oxygen and SO2 molar reaction ratio was 1:2, which is consistent with one mole equivalent of SO2 reacting with hydrogen peroxide and a second with the quinone. When BSA was added to the system to trap the quinone the ratio was reduced to 1:1. The rate of reaction of oxygen and SO2 increased with catechol concentration. However, the rate of reaction of oxygen was also markedly accelerated by SO2 and by BSA, and it is proposed that substances that react with quinones accelerate catechol autoxidation. When 4-MeC was oxidized in the presence of SO2, ~38% of the quinone that was formed reacted with bisulfite to produce the sulfonic acid adduct and most of the remainder was reduced back to the catechol. The O2/SO2 molar reaction ratio in two red wines was 1:~1.7, suggesting that some nucleophilic substances may be competing with bisulfite for quinones. The rate of reaction of oxygen was also accelerated by SO2 in red wine.

  • sulfur dioxide
  • oxygen
  • catechols
  • iron
  • Received August 2007.
  • Revision received December 2007.
  • Copyright © 2008 by the American Society for Enology and Viticulture
View Full Text

Sign in for ASEV members

ASEV Members, please sign in at ASEV to access the journal online.

Sign in for Institutional and Non-member Subscribers

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Forgot your user name or password?

PreviousNext
Back to top

Vol 59 Issue 2

  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View full PDF
Email Article

Thank you for your interest in spreading the word on AJEV.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine
(Your Name) has forwarded a page to you from AJEV
(Your Name) thought you would like to read this article from the American Journal of Enology and Viticulture.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
You have accessRestricted access
Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine
John C. Danilewicz, John T. Seccombe, Jonathan Whelan
Am J Enol Vitic.  June 2008  59: 128-136;  published ahead of print June 02, 2008 ; DOI: 10.5344/ajev.2008.59.2.128

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
You have accessRestricted access
Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine
John C. Danilewicz, John T. Seccombe, Jonathan Whelan
Am J Enol Vitic.  June 2008  59: 128-136;  published ahead of print June 02, 2008 ; DOI: 10.5344/ajev.2008.59.2.128
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Save to my folders

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Conclusions
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More from this TOC section

  • Predicting Berry Quality Attributes in cv. Xarel·lo Rain-Fed Vineyards Using Narrow-Band Reflectance-Based Indices
  • Grapevine Crown Gall Suppression Using Biological Control and Genetic Engineering: A Review of Recent Research
  • Effect of Winery Yeast Lees on Touriga Nacional Red Wine Color and Tannin Evolution
Show more Articles

Similar Articles

AJEV Content

  • Current Volume
  • Archive
  • Best Papers
  • ASEV National Conference Technical Abstracts
  • Collections
  • Free Sample Issue

Information For

  • Authors
  • Open Access/Subscription Publishing
  • Submission
  • Subscribers
  • Permissions and Reproductions
  • Advertisers

Other

  • Home
  • About Us
  • Feedback
  • Help
  • Alerts
  • Catalyst
  • ASEV
asev.org

© 2023 American Society for Enology and Viticulture.  ISSN 0002-9254.

Powered by HighWire