Skip to main content
Advertisement

Main menu

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
      • Proprietary Rights Notice for AJEV Online
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN

User menu

  • Log in

Search

  • Advanced search
American Journal of Enology and Viticulture
  • Log in
  • Follow ajev on Twitter
  • Follow ajev on Linkedin
American Journal of Enology and Viticulture

Advanced Search

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN
Research Article

Visible-Near Infrared Reflectance Spectroscopy for Nondestructive Analysis of Red Wine Grapes

Michael Fadock, Ralph B. Brown, Andrew G. Reynolds
Am J Enol Vitic. January 2016 67: 38-46; published ahead of print September 03, 2015 ; DOI: 10.5344/ajev.2015.15035
Michael Fadock
1School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Ralph B. Brown
1School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
2Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada L2S 3A1.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Andrew G. Reynolds
2Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario, Canada L2S 3A1.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • For correspondence: areynold@brocku.ca
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Composite samples of intact grape berries were collected weekly from veraison until harvest. Each sample comprised ~400 berries selected following the preharvest row sampling protocol specified by the vineyard manager. The grape cultivars and corresponding number of samples of each collected in 2009 and 2010 were as follows: Cabernet Sauvignon (43, 36), Cabernet franc (83, 80), and Syrah (38, 36). Reflectance spectra for the composite samples in a wavelength range of 350 to 850 nm were collected with a diode array spectrometer. Chemical analyses for soluble solids content, Brix, pH, titratable acidity (TA), total phenols, and total anthocyanins were carried out for all samples. Chemometric calibrations for corresponding reflectance data were developed using trained partial least squares regression models with several preprocessing methods (smoothing, normalization, differentiation) and subjected to variable selection by recursive feature elimination. Trained models were externally validated with data from the alternate year. Best performing models for Brix, pH, TA, phenols, and anthocyanins in 2009 had root mean square errors (RMSEP) of 0.65, 0.05, 0.59 g/L, 31.2 mg/L, and 75 mg/L, respectively, with corresponding R2 values of 0.84, 0.58, 0.56, 0.27 and 0.65. The best 2010 models had RMSEP of 0.65, 0.05, 0.86 g/L, 27.9 mg/L, and 111 mg/L, respectively, with corresponding R2 values of 0.89, 0.81, 0.58, 0.25, and 0.17. The 2009 calibrations were used for estimating Brix and pH from spectral data of the samples collected in the next growing season and yielded RMSEP performance of 0.87 and 0.05 and R2 values of 0.71 and 0.56, respectively. Principal component analysis decomposition of 2009 and 2010 reflectance data showed similarities in the resultant loadings, indicating a similar underlying data structure.

  • spectroscopy
  • chemometrics
  • nondestructive berry analysis
  • quality testing
  • ©2016 by the American Society for Enology and Viticulture
View Full Text

Sign in for ASEV members

ASEV Members, please sign in at ASEV to access the journal online.

Sign in for Institutional and Non-member Subscribers

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Forgot your user name or password?

PreviousNext
Back to top

Vol 67 Issue 1

  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View full PDF
Email Article

Thank you for your interest in spreading the word on AJEV.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Visible-Near Infrared Reflectance Spectroscopy for Nondestructive Analysis of Red Wine Grapes
(Your Name) has forwarded a page to you from AJEV
(Your Name) thought you would like to read this article from the American Journal of Enology and Viticulture.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
You have accessRestricted access
Visible-Near Infrared Reflectance Spectroscopy for Nondestructive Analysis of Red Wine Grapes
Michael Fadock, Ralph B. Brown, Andrew G. Reynolds
Am J Enol Vitic.  January 2016  67: 38-46;  published ahead of print September 03, 2015 ; DOI: 10.5344/ajev.2015.15035

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
You have accessRestricted access
Visible-Near Infrared Reflectance Spectroscopy for Nondestructive Analysis of Red Wine Grapes
Michael Fadock, Ralph B. Brown, Andrew G. Reynolds
Am J Enol Vitic.  January 2016  67: 38-46;  published ahead of print September 03, 2015 ; DOI: 10.5344/ajev.2015.15035
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Save to my folders

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More from this TOC section

  • Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients
  • Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size
  • Diversity of Wild Yeasts During Spontaneous Fermentation of Wines from Local Grape Varieties in Turkey
Show more Research Articles

Similar Articles

AJEV Content

  • Current Volume
  • Papers in Press
  • Archive
  • Best Papers
  • ASEV National Conference Technical Abstracts
  • Collections
  • Free Sample Issue

Information For

  • Authors
  • Open Access/Subscription Publishing
  • Submission
  • Subscribers
  • Permissions and Reproductions
  • Advertisers

Alerts

  • Alerts
  • RSS Feeds

Other

  • Home
  • About Us
  • Feedback
  • Help
  • Catalyst
  • ASEV
asev.org

© 2023 American Society for Enology and Viticulture.  ISSN 0002-9254.

Powered by HighWire