Skip to main content
Advertisement

Main menu

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
      • Proprietary Rights Notice for AJEV Online
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN

User menu

  • Log in

Search

  • Advanced search
American Journal of Enology and Viticulture
  • Log in
  • Follow ajev on Twitter
  • Follow ajev on Linkedin
American Journal of Enology and Viticulture

Advanced Search

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN
Research ArticleResearch ArticleResearch Articles

Predicting Key Phenological Stages for 17 Grapevine Cultivars (Vitis vinifera L.)

Diana Zapata, Melba Salazar-Gutierrez, Bernardo Chaves, Markus Keller, Gerrit Hoogenboom
Am J Enol Vitic. January 2017 68: 60-72; published ahead of print September 22, 2016 ; DOI: 10.5344/ajev.2016.15077
Diana Zapata
1AgWeatherNet Program, Washington State University, Prosser, WA 99350
2Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
3present address: Department of Soil and Crop Science, Texas A&M University, College Station, TX 77843
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • For correspondence: cer.diana@gmail.com
Melba Salazar-Gutierrez
1AgWeatherNet Program, Washington State University, Prosser, WA 99350
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Bernardo Chaves
1AgWeatherNet Program, Washington State University, Prosser, WA 99350
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Markus Keller
2Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Gerrit Hoogenboom
1AgWeatherNet Program, Washington State University, Prosser, WA 99350
4present address: Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Weather conditions have a significant impact on crops, and temperature is one of the main factors that controls plant development. Thermal time models based on temperature have been applied to predict the development of many species. To implement these models, determination of an appropriate base temperature (Tb) is required to characterize the differences among developmental stages and cultivars. The goal of this study was to determine the unique Tb and degree-days (DD) to predict budbreak, bloom, and veraison for 17 cultivars. Tb’s were estimated with the minimum variance method using phenological data collected over 23 years in Prosser, WA. Tb increased throughout grapevine development and ranged from 6.1 to 8.4°C for budbreak, from 7.2 to 10.5°C for bloom, and from 9.4 to 12.8°C for veraison. Starting DD accumulation on 1 Jan and using the Tb’s estimated for each cultivar, the duration to budbreak ranged from 78 to 180 DD, from budbreak to bloom ranged from 240 to 372 DD, and from bloom to veraison ranged from 556 to 800 DD. Errors in prediction varied between 4.8 and 7.8 days to budbreak, between 1.9 and 5.5 days to bloom, and between 7.1 and 12.4 days to veraison. Based on the errors in prediction, models that used an estimated Tb specific for a phenological stage performed better than models that had a fixed Tb of 0 and 10°C. The estimated thermal time parameters provide a simple approach for characterizing differences among cultivars and assist growers and industry in implementing management practices through simple decision support tools based on thermal time models.

  • decision support
  • degree-days
  • development
  • growth stages
  • phenology
  • phenophases
  • ©2017 by the American Society for Enology and Viticulture
View Full Text

Sign in for ASEV members

ASEV Members, please sign in at ASEV to access the journal online.

Sign in for Institutional and Non-member Subscribers

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Forgot your user name or password?

PreviousNext
Back to top

Vol 68 Issue 1

  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View full PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on AJEV.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Predicting Key Phenological Stages for 17 Grapevine Cultivars (Vitis vinifera L.)
(Your Name) has forwarded a page to you from AJEV
(Your Name) thought you would like to read this article from the American Journal of Enology and Viticulture.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
You have accessRestricted access
Predicting Key Phenological Stages for 17 Grapevine Cultivars (Vitis vinifera L.)
Diana Zapata, Melba Salazar-Gutierrez, Bernardo Chaves, Markus Keller, Gerrit Hoogenboom
Am J Enol Vitic.  January 2017  68: 60-72;  published ahead of print September 22, 2016 ; DOI: 10.5344/ajev.2016.15077

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
You have accessRestricted access
Predicting Key Phenological Stages for 17 Grapevine Cultivars (Vitis vinifera L.)
Diana Zapata, Melba Salazar-Gutierrez, Bernardo Chaves, Markus Keller, Gerrit Hoogenboom
Am J Enol Vitic.  January 2017  68: 60-72;  published ahead of print September 22, 2016 ; DOI: 10.5344/ajev.2016.15077
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Save to my folders

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More from this TOC section

Research Article

  • Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients
  • Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size
  • Gibberellic Acid for Table Grape Inflorescence Elongation: Is It Worth It?
Show more Research Article

Research Articles

  • Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients
  • Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size
  • Gibberellic Acid for Table Grape Inflorescence Elongation: Is It Worth It?
Show more Research Articles

Similar Articles

AJEV Content

  • Current Volume
  • Papers in Press
  • Archive
  • Best Papers
  • ASEV National Conference Technical Abstracts
  • Collections
  • Free Sample Issue

Information For

  • Authors
  • Open Access/Subscription Publishing
  • Submission
  • Subscribers
  • Permissions and Reproductions
  • Advertisers

Alerts

  • Alerts
  • RSS Feeds

Other

  • Home
  • About Us
  • Feedback
  • Help
  • Catalyst
  • ASEV
asev.org

© 2023 American Society for Enology and Viticulture.  ISSN 0002-9254.

Powered by HighWire