Skip to main content
Advertisement

Main menu

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
      • Proprietary Rights Notice for AJEV Online
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN

User menu

  • Log in

Search

  • Advanced search
American Journal of Enology and Viticulture
  • Log in
  • Follow ajev on Twitter
  • Follow ajev on Linkedin
American Journal of Enology and Viticulture

Advanced Search

  • Home
  • AJEV Content
    • Current Volume
    • Papers in Press
    • Archive
    • Best Papers
    • ASEV National Conference Technical Abstracts
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN
Research Note

Technical Feasibility of Glucose Oxidase as a Prefermentation Treatment for Lowering the Alcoholic Degree of Red Wine

Pedro Valencia, Karen Espinoza, Cristian Ramirez, Wendy Franco, Alejandra Urtubia
Am J Enol Vitic. July 2017 68: 386-389; published ahead of print March 23, 2017 ; DOI: 10.5344/ajev.2017.16005
Pedro Valencia
1Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Karen Espinoza
1Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Cristian Ramirez
1Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Wendy Franco
2Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackena 4860, Santiago, Chile
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Alejandra Urtubia
1Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
3Centro Regional de Estudios en Alimentos y Salud (CREAS), Avenida Universidad 330, Placilla-Sector Curauma, Valparaíso, Chile.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • For correspondence: alejandra.urtubia@usm.cl
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

In the present work, the use of the glucose oxidase/catalase enzymatic system was evaluated as an alternative to decrease glucose concentration and eventually produce a reduced-alcohol wine. The effects of glucose oxidase, catalase, and aeration on glucose concentration were evaluated after 24 and 48 hr of treatment of 27°Brix Carmenere must. The results showed that the effect of aeration and glucose oxidase was not significant compared with the effect produced by glucose oxidase itself. In addition, the use of catalase combined with glucose oxidase provided the best result, decreasing the glucose concentration by 51 and 78% after 24 and 48 hr, respectively, when 200 U/mL of both enzymes was used. The alcoholic degree obtained after three and five days under this treatment and subsequent fermentations were 15% (v/v) ± 0.8 and 14% (v/v) ± 0.8, respectively. A major drawback of this treatment was the color change of Carmenere must because H2O2 was produced during the glucose oxidase treatment, despite the presence of catalase. The technical feasibility of using this prefermentative process led to a divided conclusion; obtaining a lower alcoholic degree using the glucose oxidase/catalase system was possible, but if the goal is the industrial application of this technique, the color change should be investigated further. An evaluation of the glucose oxidase/catalase ratio was projected to show an improvement of the H2O2 elimination and, subsequently, decrease the effect on color change.

  • ethanol lowering
  • glucose oxidase
  • wine fermentation
  • ©2017 by the American Society for Enology and Viticulture
View Full Text

Sign in for ASEV members

ASEV Members, please sign in at ASEV to access the journal online.

Sign in for Institutional and Non-member Subscribers

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Forgot your user name or password?

PreviousNext
Back to top

Vol 68 Issue 3

  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View full PDF
Email Article

Thank you for your interest in spreading the word on AJEV.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Technical Feasibility of Glucose Oxidase as a Prefermentation Treatment for Lowering the Alcoholic Degree of Red Wine
(Your Name) has forwarded a page to you from AJEV
(Your Name) thought you would like to read this article from the American Journal of Enology and Viticulture.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
You have accessRestricted access
Technical Feasibility of Glucose Oxidase as a Prefermentation Treatment for Lowering the Alcoholic Degree of Red Wine
Pedro Valencia, Karen Espinoza, Cristian Ramirez, Wendy Franco, Alejandra Urtubia
Am J Enol Vitic.  July 2017  68: 386-389;  published ahead of print March 23, 2017 ; DOI: 10.5344/ajev.2017.16005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
You have accessRestricted access
Technical Feasibility of Glucose Oxidase as a Prefermentation Treatment for Lowering the Alcoholic Degree of Red Wine
Pedro Valencia, Karen Espinoza, Cristian Ramirez, Wendy Franco, Alejandra Urtubia
Am J Enol Vitic.  July 2017  68: 386-389;  published ahead of print March 23, 2017 ; DOI: 10.5344/ajev.2017.16005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Save to my folders

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Acknowledgments
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More from this TOC section

  • New Rapid, Simple, and Cheap Methods to Determine Tyramine in Fermented Beverages and Culture Medium
  • Cooperation and Compensation to Mitigate Fungicide Resistance
  • Quinones of Macfadyena cynanchoides for Control of Aspergillus carbonarius and Aspergillus niger in Wine
Show more Research Note

Similar Articles

AJEV Content

  • Current Volume
  • Papers in Press
  • Archive
  • Best Papers
  • ASEV National Conference Technical Abstracts
  • Collections
  • Free Sample Issue

Information For

  • Authors
  • Open Access/Subscription Publishing
  • Submission
  • Subscribers
  • Permissions and Reproductions
  • Advertisers

Alerts

  • Alerts
  • RSS Feeds

Other

  • Home
  • About Us
  • Feedback
  • Help
  • Catalyst
  • ASEV
asev.org

© 2023 American Society for Enology and Viticulture.  ISSN 0002-9254.

Powered by HighWire