Abstract
Sangiovese vines mechanically spur-pruned during dormancy in February were manually finished either immediately or post budburst to test the potential of a ‘double-pruning’ approach to delay fruit sugar accumulation and limit yield. The treatments were applied in 2014, 2015, and 2016 at BBCH-0 as standard hand-finishing on dormant buds (SHF), and as late (LHF) and very late (VLHF) hand-finishing at BBCH-14 and BBCH-19, i.e., when the two apical shoots on the mechanically-shortened canes were ~10 and 20 cm long, respectively. While yield per vine was drastically reduced in the VLHF treatment (−43% versus SHF) due to high incidence of unsprouted (blind) nodes, lower shoot fruitfulness, and berries per cluster, yield reduction in LHF was −22% versus SHF due only to the incidence of unsprouted nodes. While the fruit ripening profile was not significantly modified in VLHF compared to SHF, in data pooled over three seasons, LHF delayed basic fruit composition at harvest, producing fruit with less total soluble solids, lower pH, and greater acidity, but more phenolics than SHF. Overall, LHF proved to be effective at reducing yield per vine to a level that did not require expensive cluster thinning. By reducing berry sugar accumulation, it has the potential to produce wines with lower alcohol and higher phenol content. Noteworthy too is its potential to delay harvest date or increase crop hanging time under specific vineyard conditions.
- Received February 2017.
- Revision received April 2017.
- Accepted April 2017.
- Published online September 2017
- ©2017 by the American Society for Enology and Viticulture
Sign in for ASEV members
ASEV Members, please sign in at ASEV to access the journal online.
Sign in for Institutional and Non-member Subscribers
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.