Skip to main content
Advertisement

Main menu

  • Home
  • AJEV Content
    • Current Issue
    • Papers in Press
    • Archive
    • Best Papers
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
      • Proprietary Rights Notice for AJEV Online
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN
  • Other Publications
    • Catalyst

User menu

  • Log in

Search

  • Advanced search
American Journal of Enology and Viticulture
  • Other Publications
    • Catalyst
  • Log in
  • Follow ajev on Twitter
  • Follow ajev on Linkedin
American Journal of Enology and Viticulture

Advanced Search

  • Home
  • AJEV Content
    • Current Issue
    • Papers in Press
    • Archive
    • Best Papers
    • Collections
    • Free Sample Issue
  • Information For
    • Authors
    • Open Access and Subscription Publishing
    • Submission
    • Subscribers
    • Permissions and Reproductions
    • Advertisers
  • About Us
  • Feedback
  • Alerts
    • Alerts
    • RSS Feeds
  • Help
  • Login
  • ASEV MEMBER LOGIN

Water Management of Irrigated Cabernet Sauvignon Grapevines in Semi-Arid Areas

James E. Ayars, Isabel Abrisqueta, Christopher Parry, Anji Perry, Andrew J. McElrone
Am J Enol Vitic. October 2017 68: 458-467; published ahead of print August 24, 2017 ; DOI: 10.5344/ajev.2017.17022
James E. Ayars
1Agricultural Engineer, USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • For correspondence: james.ayars@ars.usda.gov
Isabel Abrisqueta
2Research Scientist, Dept. of Irrigación, Centro de Edafología y Biología Aplicada del Segura, P.O. Box 164, Espinardo, 30100, Murcia, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Christopher Parry
3Post Doc, USDA-ARS, Department of Viticulture and Enology, UC Davis, Davis, CA 95616
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Anji Perry
4Viticulturist, J. Lohr, Vineyards & Wines, 6169 Airport Road, Paso Robles, CA 93446
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
Andrew J. McElrone
5Research Plant Physiologist, USDA-ARS, Department of Viticulture and Enology, UC Davis, Davis, CA 95616
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Find this author on ADS search
  • Find this author on Agricola
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The effect of four years of deficit irrigation on water savings, yield, crop load, plant growth, and juice composition was determined on Cabernet Sauvignon grapes grown on the Central Coast of California. The growing season was divided into three periods. The first was from budburst to fruit set, during which there was no irrigation. The second was from fruit set to three weeks post-fruit set, during which 75% of calculated crop water use (ETc) was applied for all treatments. The third began three weeks post-fruit set and continued to harvest, during which irrigation resumed whenever the leaf water potential (LWP) reached −1.2 MPa in one of three sustained deficit irrigation treatments equal to 25/35% (LOW), 50% (MED), and 75/65% (HIGH) of ETc. The sum of rainfall and irrigation applied during the growing season ranged from 91 to 196 mm, from 145 to 234 mm, and from 198 to 273 mm for the LOW, MED, and HIGH treatments, respectively. Total water use, including soil water during the growing season, ranged from 250 to 359 mm, 288 to 418 mm, and 313 to 378 mm for the LOW, MED, and HIGH treatments, respectively. Yield was linearly related to the sum of irrigation and rain and to the total available water (rain, irrigation, and stored soil water) during the growing season. Yield was consistently lower in the LOW treatment across all years than in the MED and HIGH treatments; while yields in the MED and HIGH treatments were not different. Average pruning weight and cane weight declined in all treatments over the four years of the study, as did average berry size. Berry and wine composition was not affected by irrigation treatment within a given year, but were different across years due to climate, irrigation schedules, and harvest dates. Our results illustrate potential applied water savings during the growing season with moderate deficit irrigation (i.e., MED), with minimal or no significant effect on fruit yield and juice composition, while severe reduction of applied water (i.e., LOW) led to loss of yield without changing juice composition and would not be considered economically sustainable.

  • California
  • drip irrigation
  • regulated deficit
  • sustained deficit
  • water management
  • yield
  • Received March 2017.
  • Revision received March 2017.
  • Revision received June 2017.
  • Accepted July 2017.
  • ©2017 by the American Society for Enology and Viticulture
View Full Text

Sign in for ASEV members

ASEV Members, please sign in at ASEV to access the journal online.

Sign in for Institutional and Non-member Subscribers

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Forgot your user name or password?

PreviousNext
Back to top

Vol 68 Issue 4

Issue Cover
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View full PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on AJEV.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Water Management of Irrigated Cabernet Sauvignon Grapevines in Semi-Arid Areas
(Your Name) has forwarded a page to you from AJEV
(Your Name) thought you would like to read this article from the American Journal of Enology and Viticulture.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
You have accessRestricted access
Water Management of Irrigated Cabernet Sauvignon Grapevines in Semi-Arid Areas
James E. Ayars, Isabel Abrisqueta, Christopher Parry, Anji Perry, Andrew J. McElrone
Am J Enol Vitic.  October 2017  68: 458-467;  published ahead of print August 24, 2017 ; DOI: 10.5344/ajev.2017.17022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
You have accessRestricted access
Water Management of Irrigated Cabernet Sauvignon Grapevines in Semi-Arid Areas
James E. Ayars, Isabel Abrisqueta, Christopher Parry, Anji Perry, Andrew J. McElrone
Am J Enol Vitic.  October 2017  68: 458-467;  published ahead of print August 24, 2017 ; DOI: 10.5344/ajev.2017.17022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Save to my folders

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Literature Cited
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More from this TOC section

  • Autochthonous Oenococcus oeni Strain to Avoid Histamine Formation in Red Wines: A Study in Real Winemaking Conditions
  • Evaluation of Two Phylloxera Genotypes in Argentina on Six Vitis vinifera Cultivars and Three Rootstocks
  • Sensory Evaluation of Syrah and Cabernet Sauvignon Wines: Effects of Harvest Maturity and Prefermentation Soluble Solids
Show more Research Article

Similar Articles

AJEV Content

  • Current Issue
  • Papers in Press
  • Archive
  • Best Papers
  • Collections
  • Free Sample Issue

Information For

  • Authors
  • Open Access and Subscription Publishing
  • Submission
  • Subscribers
  • Permissions and Reproductions
  • Advertisers

Alerts

  • Alerts
  • RSS Feeds

Other

  • Home
  • About Us
  • Feedback
  • Help
  • Catalyst
  • ASEV
asev.org

© 2021 American Society for Enology and Viticulture.  ISSN 0002-9254.

Powered by HighWire