Abstract
Background and goals The use of a mixed culture of Saccharomyces cerevisiae and non-Saccharomyces yeasts is useful for increasing sensory complexity of wines. Among apiculate yeasts, Hanseniaspora vineae in particular has been used successfully at winery scale and is now available to winemakers as an active dry yeast. This species only tolerates moderate levels of ethanol (~10% v/v). The implementation of a mixed culture with S. cerevisiae is a useful strategy to obtain complete fermentations, with the challenge of maintaining the increase in flavor complexity. Some mixed culture fermentations have been unsuccessful due to nutrient competition; addition of diammonium salts can resolve such unsuccessful fermentations, but diammonium phosphate salt inhibits the production of aroma compounds by H. vineae and other yeasts. Therefore, alternative nutrients and different S. cerevisiae strain partners should be investigated for mixed culture fermentations.
Methods and key findings This work focused on the effects of nutrient addition on selected commercial S. cerevisiae strains capable of growing and fermenting with H. vineae (HV205) to improve mixed culture performance. H. vineae fermentations produced higher concentrations of 2-phenylethanol, tyrosol, and tryptophol acetates, compared with pure cultures of S. cerevisiae. These compounds, along with ethyl lactate, 3-methyl-1-butanol, methionol, acetoin, mevalonolactone, γ-butyrolactone, and C4/C5 isoacids, are produced at significant levels by H. vineae and could be considered as the volatile footprint flavor of this species under mixed culture conditions. This work analyzed the use of appropriate nutrients and S. cerevisiae partners that may influence expected aroma profiles.
Conclusions and significance A significant increase in fruity and floral aroma was found in wines produced with mixed culture fermentations than with conventional single-strain S. cerevisiae fermentations (p < 0.005). Growth of the mixed culture was improved by amino acid supplementation compared with yeast extract and commercial yeast lysate, but fermentation kinetics and final aromas were similar in wines with the three S. cerevisiae partners and all the alternative nutrients tested.
- Received May 2024.
- Accepted October 2024.
- Published online December 2024
- Copyright © 2024 by the American Society for Enology and Viticulture. All rights reserved.
Sign in for ASEV members
ASEV Members, please sign in at ASEV to access the journal online.
Sign in for Institutional and Non-member Subscribers
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 2 day for US$10.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.