INDEX
Volume 26 1975

AUTHORS — ORIGINAL PAPERS

A
Abbas, S. 168
Acree, T. E. 184
Akiyoshi, M. A. 134
Aljibury, F. K. 214
Alley, C. J. 105, 109

B
Balasubrahmanyam, V. R. 168
Baranek, Paul P. 37
Beelman, Robert B. 18
Berg, H. W. 134
Brewer, Robert 214
Brown, Milford S. 103
Burroughs, L. F. 25

C
Caputi, A., Jr. 148
Carter, G. H. 12
Chan, Lloyd 201
Christensen, E. N. 148
Christensen, Peter 179, 188, 214
Cottrell, Thomas 154
Crowell, E. A. 97

d
de Wet, P. 62

F
Ferrari, N. L. 144

G
Goheen, A. C. 144
Guadagni, D. 208
Guymon, J. F. 97

H
Hoekman, Mark 70
Hsia, Chao L. 57

J
Jensen, Fred L. 79, 90
Johnson, John 164
Johnson, Tamis L. 12

K
Kasimatis, A. N. 37, 125, 158, 175, 214
Kepner, R. E. 70
Khanduja, S. D. 168
Kissler, James J. 79
Kliwer, W. M. 75, 82, 125, 175
Kluba, Richard M. 18

L
Lakso, A. N. 75
Lavee, Shimon 164
Leavitt, George M. 79, 90
Lee, C. Y. 184
Lider, Lloyd A. 125, 144, 175

M
Muller, Carlos J. 70

N
Nagel, C. W. 12, 57
Noble, A. C. 158, 195

O
Ough, C. S. 5, 30, 92, 130, 158, 195, 201

P
Peacock, William L. 79, 90
Peterson, Jeffrey R. 119
Planck, Ralph W. 57
Pool, Robert M. 43

R
Robinson, W. B. 184

S
Sakato, Kent H. 70
Scutt, K. 148
Sieberhagen, H. A. 62
Singleton, V. L. 5, 62
Slinkard, K. 148
Smart, Richard E. 119
Stackler, B. 148
Stern, D. J. 208
Stevens, K. L. 208
Stoewsand, G. S. 184
Swanson, Frederick H. 37, 90

T
Temple, D. 92, 195

V
Van Buren, J. P. 184
van Wyk, C. J. 62
Vilas, Edward P., Jr. 37

W
Weaver, Randy 201
Weaver, Robert J. 47, 164
Webb, A. D. 70
Wildenradt, H. L. 148
Winton, Walter 5

Y
Yang, H. Y. 1

Z
Zepponi, Gino 154

Am. J. Enol. Viticult., Vol. 25, No. 4, 1975
227
AUTHORS — ABSTRACTS

Committee on Public on Information 220
Conner, H. A. 50
Coome, B. C. 112
Coome, B. G. 117

Dallas, Phillip 172
DeHaven, R. W. 225
De Klerk, C. A. 52
Delaney, M. A. 115
Dellamonicia, Edward S. 223
DeVilliers. O. T. 218, 218
Dhillon, B. S. 112
Downton, W. J. S. 116, 117
Dreschreider, A. R. 219
Dubernet, M. 51
Dubovenko, N. P. 219
du Plessis, C. S. 219
Durac, Jack 113
Düring, H. 224
Durmishidze, S. V. 52
Dyer, R. H. 171, 223

Egorov, I. A. 113
Erath, Richard 112
Eschenbruch, R. 221
Eschnauer, H. 114
Ethiraj, S. 56
Evans, J. C. 51
Evans, M. E. 171

Farrell, John P. 55
Feldkamp, Phyllis 114
Ferris, H. 173
Fischerty, D. L. 225
Folwell, R. J. 114
Food Technologists’ Expert Panel on Food Safety and Nutrition 220
Fouda, H. 55
Fuller, G. 56, 220, 220
Fuqua, Gary L. 112

Gagnon, A. J. 51
Gazeau, J. P. 53
General Agreement on Tariffs and Trade, Contracting Parties 114
Giliomee, J. H. 52
Goheen, A. C. 53
Goldordiga, P. Ya. 219
Gritsenko, N. P. 219
Graham, Robert P. 174
Grasso, S. 53
Greenshields, R. N. 219
Grosz, E. A., Jr. 54
Guadagni, D. G. 220
Gupta, P. K. 50
Gustafson, H. L. 173

Hale, C. R. 56, 117
Hawker, J. S. 116, 117
Hevin, M. 58
Hewitt, W. B. 52
Hieke, E. 56
Hill, A. S. 225
Hoover, M. W. 220
Hopkins, D. L. 53, 116
Howell, G. S., Jr. 51
Hoy, M. A. 225

Ireland, J. P. 218, 218

Jawanda, J. S. 118
Johnson, S. S. 51
Jones, E. 115

Kadr, C. I. 54
Kasimatis, A. N. 50, 118, 224
Kessler, J. J. 118
Khachidze, O. T. 52
Kido, H. 172
Kinsella, J. E. 50
Kirikoi, Ya T. 218
Koval’chuk, A. V. 219
Kriedemann, P. E. 117, 218
Krishtofori, N. I. 221
Kundu, B. S. 56
Kurokawa, A. 225

Lear, B. 52
Leclair, P. 53
Lee, C. Y. 222
Lehoczyk, J. 172
Le Roux, M. S. 55
Lipka, Z. 115
Looney, N. E. 224
Loveys, B. R. 117, 218
Luhn, C. F. 53

McKenny, M. V. 173

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mackey, B.</td>
<td>56</td>
</tr>
<tr>
<td>Madhava-Rao, U. N.</td>
<td>224</td>
</tr>
<tr>
<td>Magson, A. B.</td>
<td>115</td>
</tr>
<tr>
<td>Maldonado, O.</td>
<td>220</td>
</tr>
<tr>
<td>Markakis, P.</td>
<td>221</td>
</tr>
<tr>
<td>Martak, A. A.</td>
<td>113</td>
</tr>
<tr>
<td>Martin, G. E.</td>
<td>171, 171, 223</td>
</tr>
<tr>
<td>Maugenet, J.</td>
<td>223</td>
</tr>
<tr>
<td>May, P.</td>
<td>51</td>
</tr>
<tr>
<td>Meaux, R.</td>
<td>219</td>
</tr>
<tr>
<td>Meyer, J.-P.</td>
<td>222</td>
</tr>
<tr>
<td>Meynhardt, J. T.</td>
<td>218, 218</td>
</tr>
<tr>
<td>Milligan, D.</td>
<td>172</td>
</tr>
<tr>
<td>Mollenhauer, H. H.</td>
<td>53, 115, 116</td>
</tr>
<tr>
<td>Moller, W. J.</td>
<td>118</td>
</tr>
<tr>
<td>Mortensen, J. A.</td>
<td>54, 116</td>
</tr>
<tr>
<td>Moskowitz, H. R.</td>
<td>220</td>
</tr>
<tr>
<td>Mourques, J.</td>
<td>223</td>
</tr>
<tr>
<td>Mukherjee, S. K.</td>
<td>50</td>
</tr>
<tr>
<td>Murray, J. K.</td>
<td>55</td>
</tr>
<tr>
<td>Muthukrishnan, C. R.</td>
<td>117</td>
</tr>
<tr>
<td>Nanitasvili, T. S.</td>
<td>219</td>
</tr>
<tr>
<td>Nesbitt, W. B.</td>
<td>112, 220</td>
</tr>
<tr>
<td>Nickol, G. B.</td>
<td>50</td>
</tr>
<tr>
<td>Northey, José</td>
<td>113</td>
</tr>
<tr>
<td>Pal, R. N.</td>
<td>118</td>
</tr>
<tr>
<td>Palamadis, N.</td>
<td>221</td>
</tr>
<tr>
<td>Pallavicini, C.</td>
<td>223</td>
</tr>
<tr>
<td>Patil, A. V.</td>
<td>50</td>
</tr>
<tr>
<td>Pavlovich, I. C.</td>
<td>221</td>
</tr>
<tr>
<td>Perry, R. L.</td>
<td>115</td>
</tr>
<tr>
<td>Peruffo, A. Dal Belin</td>
<td>223</td>
</tr>
<tr>
<td>Peterson, J. R.</td>
<td>51</td>
</tr>
<tr>
<td>Petrucci, V.</td>
<td>220</td>
</tr>
<tr>
<td>Pool, R. M.</td>
<td>118</td>
</tr>
<tr>
<td>Pop, J. V.</td>
<td>58</td>
</tr>
<tr>
<td>Popper, Karel</td>
<td>174</td>
</tr>
<tr>
<td>Powell, L. E.</td>
<td>118</td>
</tr>
<tr>
<td>Prudzie, G. N.</td>
<td>52</td>
</tr>
<tr>
<td>Quimme, Peter</td>
<td>172</td>
</tr>
<tr>
<td>Radler, F.</td>
<td>221</td>
</tr>
<tr>
<td>Raski, D. V.</td>
<td>52</td>
</tr>
<tr>
<td>Rassell, J. M.</td>
<td>221</td>
</tr>
<tr>
<td>Refatti, E.</td>
<td>53</td>
</tr>
<tr>
<td>Ribéreau-Gayon, P.</td>
<td>51</td>
</tr>
<tr>
<td>Rilling, F.</td>
<td>224</td>
</tr>
<tr>
<td>Rives, M.</td>
<td>53, 53</td>
</tr>
<tr>
<td>Roberts, Jeremy</td>
<td>113</td>
</tr>
<tr>
<td>Rodopulo, A. K.</td>
<td>113</td>
</tr>
<tr>
<td>Roeofs, W. L.</td>
<td>225</td>
</tr>
<tr>
<td>Rogers, R. T.</td>
<td>51</td>
</tr>
<tr>
<td>Rolz, C.</td>
<td>220</td>
</tr>
<tr>
<td>Samorodova-Bianki, G. B.</td>
<td>219</td>
</tr>
<tr>
<td>Saric, Ana</td>
<td>53</td>
</tr>
<tr>
<td>Sauer, M. R.</td>
<td>52</td>
</tr>
<tr>
<td>Schaeffer, A.</td>
<td>222</td>
</tr>
<tr>
<td>Schmitt, R. V.</td>
<td>52</td>
</tr>
<tr>
<td>Schneider de Cabrera, S.</td>
<td>220</td>
</tr>
<tr>
<td>Scholefield, P. B.</td>
<td>51, 224</td>
</tr>
<tr>
<td>Scienza, A.</td>
<td>224</td>
</tr>
<tr>
<td>Seiber, J.</td>
<td>55</td>
</tr>
<tr>
<td>Shalla, T. A.</td>
<td>54</td>
</tr>
<tr>
<td>Shanmugam, A.</td>
<td>117</td>
</tr>
<tr>
<td>Sharma, J. N.</td>
<td>224</td>
</tr>
<tr>
<td>Sharma, R. L.</td>
<td>50</td>
</tr>
<tr>
<td>Sharma, S. C.</td>
<td>50</td>
</tr>
<tr>
<td>Sharma, V. K.</td>
<td>50</td>
</tr>
<tr>
<td>Siashvili, A. I.</td>
<td>219</td>
</tr>
<tr>
<td>Singh, Raghbir</td>
<td>118, 224</td>
</tr>
<tr>
<td>Sistrunk, W. A.</td>
<td>115</td>
</tr>
<tr>
<td>Slinkard, K.</td>
<td>171, 222</td>
</tr>
<tr>
<td>Smart, R. E.</td>
<td>116</td>
</tr>
<tr>
<td>Smith, L.</td>
<td>51</td>
</tr>
<tr>
<td>Smith, P. C.</td>
<td>52</td>
</tr>
<tr>
<td>Sokolov, O. A.</td>
<td>218</td>
</tr>
<tr>
<td>Somers, T. C.</td>
<td>171</td>
</tr>
<tr>
<td>Sopromadze, A. N.</td>
<td>219</td>
</tr>
</tbody>
</table>

SUBJECT INDEX

A

abscisic acid
biosynthesis under osmotic stress (abstr) 218
effects on ripening (abstr) 117
role in water stress (abstr) 224

acidity
adjustment in wines 12
amelioration effects on 18
in developing berries (abstr) 50

aflatoxins, determination in wines (abstr) 115
amelioration effects on acidity, malate, tartrate, potassium, and pH 18

amino acids
effects of Protamorin G 10x, 78-2 on (abstr) 219
origins in berries (abstr) 218

anthocyanins
equilibria, correlation with wine quality (abstr) 171
from grape, stability in carbonated beverage (abstr) 221
in grape varieties (abstr) 219

aromatics in wines 70

auxins in regulating berry set and size (abstr) 112

B

benchgrafting in Germany and France (abstr) 51
benzaldehyde determination (abstr) 171
1,2-benzopyrone determination (abstr) 171, (abstr) 223

berries
ethephon effects on 79
growth regulator effects on (abstr) 224
phosphoenolpyruvate carboxylase and malic enzyme in 75
response to sprinkler cooling 214

berry
cane width and girdling effects 90
regulation of set and development (abstr) 112
ripening processes (abstr) 218
variability 37

bird damage to grapes (abstr) 225

black deadarm disease caused by Botryosphaeria stevensii (abstr) 172
Bordeaux region, yeasts in (abstr) 115
boron in vineyards (abstr) 50

Botryosphaeria stevensii in black deadarm disease (abstr) 172
brandy composition (abstr) 113
O-4-bromo-2,5-dichlorophenyl-O-methyl phenylphosphonothioate persistence (abstr) 54
browning
control in juices and wines (abstr) 174
prevention 30
bud drop, growth regulator effects on (abstr) 118
budbreak, root temperature effects on 82
buds, thiourea effects on 168

C

calcium in leaves, leafroll effects on (abstr) 117
calcium ions, turbidity in wines containing (abstr) 221
canes, width effects on berries 90
carbon dioxide determination (abstr) 171, (abstr) 222
catalase in oxygen scavenging 30
catalase inhibition 92
catechol oxidase, isoelectric point changes (abstr) 51
CCC (see (2-chloroethyl) trimethylammonium chloride)
chemistry of winemaking (abstr) 174
chlormequat, effects on fruitfulness and cluster development 47
(2-chloroethyl) trimethylammonium chloride, effects on yields (abstr) 224
cluster development, growth-retardant effects on 47
color, reactions responsible for in wine 134
color density, correlation with wine quality (abstr) 171
coloring matter detection (abstr) 50
Concord grape juice quality and stability (abstr) 115
cooling with sprinklers, berry response 214
copper, must processing effects on 57
coumarin determination (abstr) 171, (abstr) 223
cover-crop influence on yield (abstr) 116
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cytokinins, effects on</td>
<td>112</td>
</tr>
<tr>
<td>berry set and size (abstr)</td>
<td>112</td>
</tr>
<tr>
<td>flower development</td>
<td>43</td>
</tr>
<tr>
<td>shoot development (abstr)</td>
<td>118</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Desmia funeralis, bionomics of (abstr)</td>
<td>172</td>
</tr>
<tr>
<td>dibromochloropropane vs. nematodes (abstr)</td>
<td>52</td>
</tr>
<tr>
<td>dimethyl dicarbonate as a wine sterilant</td>
<td>130</td>
</tr>
<tr>
<td>o-diphenoloxidase in leaves, roots, and stems (abstr)</td>
<td>52</td>
</tr>
<tr>
<td>dry extract of wines, determination (abstr)</td>
<td>173</td>
</tr>
<tr>
<td>dying arm disease now in California (abstr)</td>
<td>118</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>enation, leaf, new symptoms in France (abstr)</td>
<td>53</td>
</tr>
<tr>
<td>thephon, effects on berries</td>
<td>79</td>
</tr>
<tr>
<td>2-ethoxyhexa-3,5-diene, geranium-like off-odor from</td>
<td>97</td>
</tr>
<tr>
<td>ethylene in regulating berry set and size (abstr)</td>
<td>112</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>fatty acid esters</td>
<td></td>
</tr>
<tr>
<td>analysis in raisins (abstr)</td>
<td>56</td>
</tr>
<tr>
<td>taste thresholds in raisins (abstr)</td>
<td>220</td>
</tr>
<tr>
<td>fermentors, performance characteristics (abstr)</td>
<td>174</td>
</tr>
<tr>
<td>flavors, computer-derived maps of (abstr)</td>
<td>220</td>
</tr>
<tr>
<td>flor sherry, surface culture of (abstr)</td>
<td>56</td>
</tr>
<tr>
<td>Florida grapes, wines from (abstr)</td>
<td>54</td>
</tr>
<tr>
<td>flower development, cytokinin effects on</td>
<td>43</td>
</tr>
<tr>
<td>foliage, removal effects on yields</td>
<td>119</td>
</tr>
<tr>
<td>frozen grapes, wines from</td>
<td>103</td>
</tr>
<tr>
<td>B-fructofuranosidase, extraction effects on activity (abstr)</td>
<td>218</td>
</tr>
<tr>
<td>fruit character, growth regulator effects on (abstr)</td>
<td>118</td>
</tr>
<tr>
<td>fruit set, root temperature effects on</td>
<td>82</td>
</tr>
<tr>
<td>fruitfulness</td>
<td></td>
</tr>
<tr>
<td>growth-retardant effects on</td>
<td>47</td>
</tr>
<tr>
<td>water-stress effects (abstr)</td>
<td>50</td>
</tr>
<tr>
<td>fungicides vs lactic acid bacteria (abstr)</td>
<td>221</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>geranium-like off-odor from 2-ethoxyhexa-3,5-diene</td>
<td>97</td>
</tr>
<tr>
<td>gibberellins</td>
<td></td>
</tr>
<tr>
<td>effects on floral bud drop and fruit character (abstr)</td>
<td>118</td>
</tr>
<tr>
<td>effects on yields (abstr)</td>
<td>224</td>
</tr>
<tr>
<td>in regulating berry set and size (abstr)</td>
<td>112</td>
</tr>
<tr>
<td>girdling effects on berries</td>
<td>90</td>
</tr>
<tr>
<td>B-1,3-glucan hydrolase, increased activity from viruses (abstr)</td>
<td>117</td>
</tr>
<tr>
<td>glucose oxidase in oxygen scavenging</td>
<td>30</td>
</tr>
<tr>
<td>grafting</td>
<td></td>
</tr>
<tr>
<td>side whip type</td>
<td>109</td>
</tr>
<tr>
<td>wedge type</td>
<td>105</td>
</tr>
<tr>
<td>grape leaf folder (see Desmia funeralis)</td>
<td></td>
</tr>
<tr>
<td>grafting</td>
<td></td>
</tr>
<tr>
<td>side whip type</td>
<td>109</td>
</tr>
<tr>
<td>wedge type</td>
<td>105</td>
</tr>
<tr>
<td>grapevine decline new in Sicily (abstr)</td>
<td>53</td>
</tr>
<tr>
<td>grapevine vein mosaic, graft-transmissible virus (abstr)</td>
<td>58</td>
</tr>
<tr>
<td>growth regulators</td>
<td></td>
</tr>
<tr>
<td>effects on berry yields (abstr)</td>
<td>224</td>
</tr>
<tr>
<td>effects on floral bud drop and fruit character (abstr)</td>
<td>118</td>
</tr>
<tr>
<td>growth retardants</td>
<td></td>
</tr>
<tr>
<td>effects on fruitfulness and cluster development</td>
<td>47</td>
</tr>
<tr>
<td>effects on pollen production and fruit set (abstr)</td>
<td>224</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>harvest, predicting date of (abstr)</td>
<td>115</td>
</tr>
<tr>
<td>p-hydroxybenzoate esters, microbial inhibition from</td>
<td>201</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>inflorescence, developmental stages (abstr)</td>
<td>224</td>
</tr>
<tr>
<td>inhibitors in regulating berry set and size (abstr)</td>
<td>112</td>
</tr>
<tr>
<td>iron, must processing effects on</td>
<td>57</td>
</tr>
<tr>
<td>irrigation</td>
<td></td>
</tr>
<tr>
<td>frequency influence on yield (abstr)</td>
<td>116</td>
</tr>
<tr>
<td>response to cut-off timing</td>
<td>188</td>
</tr>
<tr>
<td>isoamyl acetate determination (abstr)</td>
<td>171</td>
</tr>
<tr>
<td>Italian wines (abstr)</td>
<td>172</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>juice clarification</td>
<td></td>
</tr>
<tr>
<td>separation system</td>
<td>154</td>
</tr>
<tr>
<td>stability (abstr)</td>
<td>115</td>
</tr>
<tr>
<td>treatment for (abstr)</td>
<td>54</td>
</tr>
</tbody>
</table>
L
lactic acid bacteria, fungicides vs (abstr) 221
leafroll
effects on leaf minerals (abstr) 117
effects on yields 144
leafroller, omnivorous (see Playtynota stultana)
leaves
content of, effects on wine 158
volatiles in 148
leucine-2C14 decomposition during wine aging (abstr) 219
leucoanthocyanins of grapes and wines (abstr) 219
linoleic acid in grapeseed oil (abstr) 50
M
magnesium in leaves, leafroll
effects on (abstr) 117
malate, amelioration effects on 18
malate dehydrogenase in four grape varieties (abstr) 223
male sterility induced by plant regulators (abstr) 112
maleic hydrazide in inducing male sterility (abstr) 112
malic enzyme, physical properties in berries 75
marketing
U. S. Wine industry (abstr) 114
world trade in wines (abstr) 114
mechanical harvest
economic factors (abstr) 51
effects on wine 158
for drying (abstr) 51
Metaseiulus occidentalis
toxicity of chemicals (abstr) 172
diapause induction and duration in (abstr) 225
methanol in wines related to processing and variety 184
methyl alcohol determination in wine (abstr) 222
methyl bromide vs nematodes (abstr) 52
microbial inhibition from p-hydroxybenzoate esters 201
minerals in leaves (abstr) 117
must processing effects on iron and copper 57
mycoplasmalike diseases
in grapes (abstr) 52
prevention and control (abstr) 171
N
nematodes
dibromochloropropane vs 52
distribution in vineyards (abstr) 173
methyl bromide vs (abstr) 52
resistant rootstocks (abstr) 52
nitrogen
determination in wine (abstr) 219
in developing berries (abstr) 50
leafroll effects on, in leaves (abstr) 117
O
Oregon, wine grape harvest data (abstr) 112
organic acids, origins in berries (abstr) 218
oxygen scavenging with glucose oxidase-catalase enzyme system 30
P
Pacific spider mite (see Tetranychus pacificus)
pectic enzyme effects on wine color 195
pests, management in central California (abstr) 172
pH, amelioration effects on 18
pheromone trapping of Playtynota stultana (abstr) 225
phosphoenolpyruvate carboxylase, physical properties in berries 75
phosphorus
leafroll effects in, in leaves (abstr) 117
metabolism during floral initiation (abstr) 117
photosynthesis by grapevine canopies (abstr) 116
phyloxera, nature of root damage from (abstr) 224
Pierce's disease
bacterial etiology (abstr) 54
rickettsialike bacterium associated with (abstr) 53, (abstr) 116
tolerance to (abstr) 116
verification of (abstr) 115
Playtynota stultana, pheromone trapping of (abstr) 225
potassium
amelioration effects on 18
leafroll effects on, in leaves (abstr) 117
long-term responses to 179
powdery mildew, resistance to (abstr) 173
propagation
side whip graft 109
wedge graft 105
2-propanol, determination in fruits (abstr) 223
Protavamorin G 10x, 78-2, effects on amino acids (abstr) 219

proteins in four grape varieties (abstr) 223
pruning
 effects on growth and yields 175
 trials (abstr) 51
R
rachis cracking (abstr) 224
raisins, dehydration compared with
 field drying (abstr) 220
red wines compared with white (abstr) 220
research in Michigan (abstr) 51
rickettsialike bacterium
 associated with Pierce's disease
 (abstr) 53, (abstr) 116
 in grapes (abstr) 52
ripening, abscisic acid effects on (abstr) 117
root-temperature effects on budbreak, shoot
 growth, and fruit set 82
rooting, factors affecting 164
rootstocks
 breeding resistant (abstr) 112
 yields of Sultanas on (abstr) 52
S
Saccharomyces cerevisiae, sulfur dioxide vs 1
SADH (see succinic acid-2,2-dimethylhydrazide)
salinity in vineyards (abstr) 50
Schizosaccharomyces, use in
 winemaking (abstr) 222
Schizosaccharomyces pombe, sulfur dioxide vs 1
separation of juice 154
shoot growth
 cytokinins effects on (abstr) 118
 root temperature effects on 82
slashing effects on yields 119
sodium in leaves, leafroll effects on (abstr) 117
solids content, effects on wine quality 62
sorbic acid
 determination (abstracts) 54, 171, 222, 222
 effects on wine constituents 97
starch metabolism in berries (abstr) 116
stem pitting, new vine disease (abstr) 171
sterilant, dimethyldicarbonate in wine 180
sterility, male, induced by plant
 regulators (abstr) 112
stomata, physiology and photosynthesis (abstr) 117
succinic acid-2,2-dimethylhydrazide
 effects on fruitfulness and cluster
 development 47
 effects on yields (abstr) 224
sugar
 in developing berries (abstr) 50
 metabolism in berries (abstr) 116
sugars
 enzymes of accumulation cycle (abstr) 218
sulfites as food additives (abstr) 220
sulfur dioxide
 determination in wine 25, (abstr) 219
 vs Saccharomyces cerevisiae 1
 vs Schizosaccharomyces pombe 1
T
tartaric acid
 determination (abstr) 115
 recovery from still effluents (abstr) 223
tartrate, amelioration effects on 18
temperature effects on berry ontogeny (abstr) 56
Tetranychus pacificus, chemicals
toxic to (abstr) 172
thermotherapy, variations resulting (abstr) 58
thiourea effects on buds 168
tomato ringspot, virus resembling (abstr) 53
trace elements in musts and wines (abstr) 114
trellising
 effects on yields 125
 type influence on yields
 (abstr) 51, (abstr) 116, (abstr) 224
2,3,5-triiodobenzoic acid in inducing
 male sterility (abstr) 112
tropical fruits for wine and vinegar
 production (abstr) 220
turbidity in wines containing calcium
 ions (abstr) 221
U
urethane detection in wine (abstr) 55
V
variability of berries 37
variegata, radiation-induced Pusa
 Seedless (abstr) 50
varietal wines, distinctiveness 5
Velsicol VCS-506 (see O-4-bromo-
 2,5-dichlorophenyl-O-methyl
 phenylphosphothioate)
vine spacing, economic aspects (abstr) 51
vinegar, history and development (abstr) 50
virus disease
 prevention and control (abstr) 171
 resembling tomato ringspot (abstr) 53
viruses
 in grapes (abstr) 52
 heat inactivation (abstr) 53
 increasing activity of B-1,3-glucan hydrolyase from (abstr) 117
viruslike diseases, prevention and control (abstr) 171
viticulture in summer-rainfall regions (abstr) 55
volatiles
 changes during wine aging 208
 in alcoholic beverages (abstr) 56
 in home-brewed beers and wines (abstr) 219
 in leaves 148

W
wastes, treatment of (abstr) 55
water stress, fruitfulness effects (abstr) 50
white wines compared with reds (abstr) 220
Willamette Valley, wine grapes in (abstr) 112
wine, popular books on (reviews) 55, 55, 55, 55, 56, 113, 113, 114, 114, 172, 172, 218
wine quality, correlation with color density and anthocyanin equilibria (abstr) 171

Y
yeasts
 in Bordeaux region (abstr) 115
 nonfoaming strains for winemaking (abstr) 221