Guide to Authors
American Journal of Enology and Viticulture

The American Journal of Enology and Viticulture publishes full length research papers, review papers, Research Notes, and Technical Briefs on all subjects related to enology and viticulture.

The AJEV does not accept articles published in or submitted to other publications; however, Technical Briefs may contain material published elsewhere. Authorship of papers in the Journal is not limited to members of the American Society for Enology and Viticulture.

The AJEV does not pay authors for their manuscripts.

Publication Rights: The AJEV reserves first right of refusal to publish any paper or poster presented at the ASEV Annual Meetings. Papers which may be more appropriate for another publication may be released by the Editor if requested in writing by the author(s). In such cases, Technical Briefs or abstracts may be requested.

Reviews: Each manuscript receives at least two reviews. Additional authorities are consulted as necessary to confirm the scientific merit of any part or all of the manuscript. The reviewers are asked to return their recommendations and comments within three weeks, though it sometimes takes longer. Suggestions and changes required by the referees will be forwarded to the corresponding author.

The Editor and Associate Editors are responsible for judging the suitability of each article for publication. The Editors reserve the right to edit manuscripts to make them conform with the adopted style and/or to return them to the authors for revision.

Corrections: Corrections will be published, if necessary, in the Number 4 issue of each Volume. Authors are requested to call to the attention of the Editor any significant errors in their published work.

Printing Charges: We currently do not charge authors for the printing of manuscripts. However, the AJEV reserves the right to charge authors for the extra printing costs of unusual or improperly submitted materials and for extensive author alterations.

Reprints: Reprints may be ordered at the time the galley proofs are sent to the authors. Order sheets, including the cost of reprints, will accompany the proofs.

In cases where the author has access to a more economical method of reproducing the published article, he may do so provided all AJEV citations and page numbers are visible.

Publication Release Policy: © All rights reserved. Written permission to include in other scientific publications reprints of and quotations from articles published in the journal may be granted by the Editor on the condition that full credit be given both the AJEV and the author(s) and that the date of publication, volume, number, and page numbers be stated. Neither the AJEV nor the ASEV is responsible for statements or opinions printed in its publications; they represent the views of the authors or persons to whom they are credited and are not binding on the society as a whole.

General Information: All full-length manuscripts must be original research, neither simultaneously under consideration nor previously published elsewhere. Research Notes are classified as reports of new applications or interpretations of existing data; Technical Briefs are for the dissemination of information relevant to the interests of the members of the Society and may not necessarily be original research. Research Notes must neither be currently submitted nor previously published elsewhere. Technical Briefs may include previously published material.

All papers submitted must be written in English. Please be sure translations are clear to avoid misinterpretation of data. All manuscripts must be submitted in triplicate to:

The Editor
American Journal of Enology and Viticulture
P.O. Box 700
Lockeford, California 95237-0700
USA

All manuscripts mailed from outside the US should be registered. The AJEV office hours are 9 a.m. to 5 p.m. Pacific time, Monday through Friday, and the telephone number is 209-727-3439; FAX 209-727-5004.

Please provide the telephone number and telefax number of the corresponding author whenever possible.

Preparation of Manuscript: Manuscripts should be typewritten double-spaced on line-numbered 8½ × 11 inch (21 × 28 cm) paper with pages numbered. Three copies must be submitted to the Editor. Authors whose primary language is not English should have manuscripts proofread by English-speaking peers before submitting. Tables should be on numbered pages following the Literature Cited section, followed by the legends for figures on a separate numbered page. Two sets of camera-ready figures and three copies should be included (see sections on figures and tables).

Organization of Manuscript: A manuscript should conform to the general form of presentation that follows: TITLE reflecting the important aspects of the article as concisely as possible, preferably in no more than 100 characters and spaces. Do not use both common and scientific names in the title; BY-LINE listing
The author(s) name(s) centered beneath the title. Authors’ professional titles and current addresses, where the research was conducted, acknowledgments, and submission date should be given in separate paragraphs below the by-line; an ABSTRACT stating briefly the objectives and results obtained must be included. An INTRODUCTION including the general problem involved, reasons for investigation and prior work; specific MATERIALS AND METHODS used; RESULTS obtained; DISCUSSION of data obtained; and CONCLUSIONS summarizing most important results and salient points.

In MATERIALS AND METHODS, be sure to describe in adequate detail procedures that have not been fully described in cited publications. Specify conditions or variables whose control influences the experimental results (e.g., for sensory evaluation, use of colored lights or glasses).

Concluding the manuscript must be a LITERATURE CITED section, arranged alphabetically by author. Citations of journal articles should be in the following order: senior author’s name followed by initials, all other authors, initials preceding last names, title of paper with only the first word capitalized (proper nouns excepted), journal, volume, issue number (when required), pages, year in parentheses. Titles of publications should be properly abbreviated. (See examples.)

Citations of books should also include the authors’ names, title of book, edition, publisher, place of publication, and year of publication.

Unpublished data, personal communications, and articles in preparation are not acceptable as literature citations; they should be referred to parenthetically in the text. Articles that are “in press” may be so designated.

Figures: When submitting figures, glossy prints should be clear and of high quality. Be certain that all symbols and abbreviations conform to those used by AJEV. Prints with poor alignments, out-of-focus letters and symbols, and blurred lines are not acceptable. Prints, with the exception of composites, should not be mounted on cardboard.

A 1:1 reproduction is best to maintain maximum detail in printing; however, larger figures are acceptable if they are suitable for reduction without loss of detail. Exact sizes for same-size reproductions are 8½ inches (20 cm) wide for one column and 7⅞ inches (20 cm) wide for two columns; maximum height is 9⅝ inches (23 cm) including legend. On photographs, graphs, and line drawings for same-size reproduction, numbers and lettering (upper and lower case) should be in 10 point type (1/8 in. ca). Computer-generated graphs and figures are acceptable if they conform to requirements of line sharpness and boldness and of type size.

Cite all figures in numeric order in the manuscript. Legends should describe the contents so that each illustration is understandable when considered apart from the text. Each should be labeled with the figure number and author's name on the back.

Photographs submitted should be high-quality glossy prints cropped at right angles to show only essential details. Insert a scale bar when necessary to indicate magnification.

When creating composites, match photographs for subject content, background density, and similarity of contrast. Do not combine line drawings and photographs in a composite figure. Photographs in a composite should be mounted on hard cardboard, with the edges in contact; space between photographs will be inserted in printing. Submit two original composite figures or plates for publication and two prints of equivalent quality for review purposes. Black and white illustrations are preferred, but color illustrations may be considered by the Editor. A cost quotation will be provided, and the author or an institutional officer must indicate acceptance of responsibility for the quoted rate in writing before processing of that illustration will be started.

Submit two originals and two copies of each line drawing or glossy print. Frame graphs and affix index marks to ordinates and abscissae. Avoid too bold letter-
begin a sentence. Do not use a hyphen to replace the
Wine Grape Varieties available from this office.

Table: Submit tables that are self-explanatory and include enough information so that each table is intelligible without reference to the text or other tables. The title should summarize the information presented in the table without repeating the subheadings. Be sure that the layout of the table presents the data clearly. Subheadings should be brief. Non-standard abbreviations should be explained in footnotes. Footnotes are designated with superscript lower case letters or other appropriate symbols. Ditto marks should never be used.

When only a few values are to be presented, this should be done in the text rather than in a table. Data that are presented in tables should not be repeated in figures.

Cite tables in numeric order in the manuscript. Information presented in a table should agree with that in the text.

Trade Names: The names of manufacturers or suppliers of special materials should be given (including city, state and ZIP). Trade names must be capitalized and followed by
In experimentation, a chemical compound should be identified by its common name (if such name exists) or by the chemical name and structural formula.

Nomenclature: The binomial or trinomial (in italics) and the authority must be shown for plant, insects, and pathogens when first used in the abstract and in the text. Following citation in Materials and Methods, the generic name may be abbreviated to the initial, except when confusion could arise by reference to other genera with the same initial. Algae and microorganisms referred to in the manuscript should be identified by a collection number or that of a comparable listing.

For varietal names, the AEJV conforms to the spellings listed in the BATF publication Working List of US Wine Varieties available from this office.

Numerals: Spell out all numbers or fractions which begin a sentence. Do not use a hyphen to replace the preposition “to” between numerals (13 to 22 min, 3°C to 10°C) within the text; however, hyphens may be used in tables, figures, graphs, and in parentheses.

Write out numerals one through nine, except with units of measure. Write out and hyphenate simple fractions (e.g., two-thirds), with the same exceptions applying as for the use of hyphens. It is usually desirable to use decimals instead of fractions.

Time and Dates: When reporting time, use the 24 hour time system with four digits; the first two for hours and the last two for minutes (e.g., 0400 h for 4:00 a.m., 1630 h for 4:30 p.m.). Dates are reported as day of month, month, and then year (19 April 1985).

Units: Wine volumes should be reported as liters (L) or milliliters (mL). Hectoliters are not recommended.

Grape weights should be reported as grams (g), kilograms (kg), and metric tons (t).

Temperature should be reported as degrees Celsius only.

Parts per million (ppm) and parts per billion (ppb) are not recommended. The equivalent milligrams per L (mg/L) and micrograms per liter (mg/L) are preferred.

Wine or juice yield should be reported as liters per 1000 kg (L/1000 kg) or milliliters per kilogram (mL/kg) (equivalent).

Land surface area should be expressed as hectares.

Statistical Methods: Authors must report enough details of their experimental design so that the results can be judged for validity and so that previous experiments may serve as a basis for the design of future experiments.

Multiple comparison procedures such as Duncan’s multiple range test are frequently misused. Such misuse may result in incorrect scientific conclusions. Multiple range tests should be used only when the treatment structure is not well understood (e.g., studies to compare cultivars). When treatments have a logical structure, significant differences among treatments should be shown using t- or F-tests.

Usually field experiments, such as studies on crop yield and yield components, that are sensitive to environmental interactions and in which the crop environment is not rigidly controlled or monitored, should be repeated (over time and/or space) to demonstrate that similar results can (or cannot) be obtained in another environmental regime. Replicate chemical or sensory evaluations should be done to show reproducibility and consistency, respectively.

Abbreviations and Symbols: Replacement of certain unwieldy chemical names by abbreviations may occur as a convenience, though only well known abbreviations should be used (e.g., ATP, DNA). Standard chemical symbols may be used without definition (Ca, NaOH). If the article uses several abbreviated forms, define them all in a single paragraph where the first abbreviation is used.

With the exception of those standard for international usage (e.g., HPLC, ATP), do not use abbreviations in the title or abstract. The metric system is standard, and SI units should be used (other units may be placed in parenthesis after the SI).

Please note that liter is abbreviated in the AEJV by a capital L, not lower case, to avoid confusion with the number 1 in the typefaces used.

Symbols and abbreviations on figures and tables must also conform.

Volume 41 (1990)
Subject Index

A

- Acid(s). See also specific acid.
 - amino. See Amino acid.
 - caffeic. autoxidative reactions of in wine. 41:84-6.
 - cattartic. antioxidative reactions of in wine. 41:84-6.
 - carboxylic. 41:289-94.
 - chlorogenic acid. 41:84-6.
 - decanolic. during vinification. 41:48-56.
 - ellagic. identification and quantification. 41:43-7.
 - gallic. in muscadine juice. 41:43-7.

- Comparison of pre- and post-fermentation ultrafiltration on the characteristics of sulfited and non-sulfited white wines. 41:182-5.
 - See J. J. L. Cilliers. 41:84-6.
- Stevens, D. See C. S. Ough. 41:68-73.
 - Stevens, D. See C. S. Ough. 41:68-73.

T

- ______ and ______. The effect of fermentation and extended lees contact on ethyl carbamate formation in New York wine. 41:269-72.

UV

- Valpuesta, V. See M. A. Botella. 41:12-15.
- Villaroya, B. See T. Delgado. 41:342-5.

WXYZ

- Williams, P. J. See P. Winterhalter. 41:277-83.
- Winterhalter, P., M. A. Sefton, and P. J. Williams. Volatile C13-norisoprenoid compounds in Riesling wine are generated from multiple precursors. 41:277-83.
kinetics. 41:319-24.
Alpha-amino nitrogen, factor in urea accumulation. 41:58-73.
Amine(s). in Thompson Seedless wines. 41:77-83, 121-5.
Amino acid(s), in sherry wines. 41:12-15.
Ammonium. in leaf tissue of Thompson Seedless vines. 41:77-83.
Analysis. of grape tissue extracts. 41:223-8.
of metallic cations. 41:284-8.
of phenolics in red grapes. 41:204-6.
of phenolics in white grapes. 41:87-9.
of polymeric polyphenols. 41:223-8.
of wine sensory qualities. 41:74-6, 116-20.
Apricot wine. 41:229-31.
Arabinogalactan. isolation, purification, and characterization of from a red wine. 41:29-36.
Sauvignon blanc leaf removal effects on. 41:74-6.
Autoxidation, yeast. in Champagne aging. 41:121-8.
Bentonite. alternatives to in wine haze reduction. 41:147-55.
Benzyl alcohol oxidase. 41:295-300.
Berry, grape. See also Grape.
drop. gibberellic treatments effects on. 41:142-6.
enlargement. gibberellic treatments effects on. 41:142-6.
gibberellic effects on. 41:142-6.
pectin content changes in during maturation. 41:111-15.
ripe. See also Ripening.
delay in. 41:142-6.
pectin content changes during. 41:111-15.
shading effects on. 41:193-200.
Biogenic amines. formation of during winemaking. 41:160-7.
Bitter almond taste in wine. 14C-assimilates. 41:306-12.
Blending, wine. color study of blends by Sheff6 design. 41:232-40.
Bottle aging. potential assessment. 41:277-83.
Botrytis cinerea. benzyl alcohol inhibition of during grape storage. 41:265-8.
control of by canopy management to increase evaporation potential. 41:137-41.
control of by sulfur dioxide fumigation of table grapes. 41:131-6.
Brandy. alambic distillation. 41:90-103.
Browning, must. 41:346-9.
Bud, grapevine. See also Grapevine.
fruitfulness. shading effects on. 41:138-75.
necrosis. shading effects on. 41:168-75.
Bunch rot. See Botrytis cinerea.

\[
\begin{align*}
14C-assimilates. & 41:306-12. \\
C_{13}-norisoprenoid compounds. & 41:277-83. \\
Cabernet Sauvignon grapevines. & See also Grapevine(s). \\
pectin contact changes in berries. & 41:111-15.
\end{align*}
\]
Crossflow filtration. 41:182-5.
Cuvelaison. 41:57-67.

Deacclimation, *Vitis vinifera*, pruning effects on cold hardiness and water content. 41:251-60.
Decanoic acid production during vinification. 41:48-56.
Of Sauvignon blanc wines. 41:74-6.
Of Seyval blanc wines. 41:116-20.

Disease, grapevine. See also specific disease. *Botrytis cinerea*. 41:137-41.

Electron microscopy, virus identification. 41:201-3.
Ellagic acid. Identification and quantification in muscadine juice. 41:43-7.
Enzymatic hydrolysis, arabino-galactan. 41:29-36.
Enzyme(s). Malolactic systems. 41:215-18.
Ethephon treatment of Riesling vines. 41:330-41.
Fino sherry acid content. 41:12-15.
Fruit rot. 41:330-41.
Genomic integration of yeast K1 killer toxin gene. 41:37-42.
Gibberellins. Effects of ripening and berry drop in Thompson Seedless. 41:142-6.
Glutathione. 41:346-9.
Glycoconjugates. 41:277-83.
Grape(s). Arabino-3,6-galactan. 41:29-36.
Grapevine(s). See also specific varieties. Cabernet Sauvignon. Leaf and cluster shading effects on fruit and wine sensory qualities. 41:193-200.
Shading effects on bud necrosis and fruitfulness. 41:168-75.
Storage, benzyal alcohol use for *Botrytis cinerea* inhibition. 41:265-8.
Sulfur dioxide fumigation of table grapes. 41:131-6.
Shots. 14C-assimilate distribution. 41:306-12.
Table. See also Table grapes.
Storage. 41:131-6.
Tissue extract analysis. 41:223-8.
Variety tissue analysis. 41:223-8.
Waterberry. 41:301-5.

False potassium. 41:77-83.
Kinetic. 41:319-24.
Ethyl carbamate formation during. 41:68-73, 189-92, 269-72.
Histamine formation. 41:160-7.
Malolactic. See also Malolactic fermentation.
Biogenic amines formation. 41:160-7.
Lactic acid bacteria comparisons for energy yielding (ATP) malolactic enzyme systems. 41:215-18.
Simultaneous yeast/bacterial. 41:57-67.
Tyramine formation. 41:160-7.
Without sulfur dioxide. 41:313-18.
Fino Sherry acid content. 41:12-15.
Flavor, wine. Bitter almond taste. 41:295-300.
Missouri Seyval Blanc sensory and chemical analysis. 41:116-20.
Precursors. 41:277-83.
Fruit rot. 41:330-41.
Genomic integration of yeast K1 killer toxin gene. 41:37-42.
Gibberellins. Effects of ripening and berry drop in Thompson Seedless. 41:142-6.
Glutathione. 41:346-9.
Glycoconjugates. 41:277-83.
Grape(s). Arabino-3,6-galactan. 41:29-36.
Grapevine(s). See also specific varieties.
Cabernet Sauvignon. Leaf and cluster shading effects on fruit and wine sensory qualities. 41:193-200.
Shading effects on bud necrosis and fruitfulness. 41:168-75.
Storage, benzyal alcohol use for *Botrytis cinerea* inhibition. 41:265-8.
Sulfur dioxide fumigation of table grapes. 41:131-6.
Shots. 14C-assimilate distribution. 41:306-12.
Table. See also Table grapes.
Storage. 41:131-6.
Tissue extract analysis. 41:223-8.
Variety tissue analysis. 41:223-8.
Waterberry. 41:301-5.

Grapevine(s). See also specific varieties.
Bud necrosis and fruitfulness. 41:168-75.
Tissue response to low temperature exotherm. 41:251-60.
14C-assimilate distribution. 41:306-12.
Cabernet Sauvignon. Leaf and cluster shading effects on fruit and wine sensory qualities. 41:193-200.
Pectin content of berries during maturation. 41:111-15.
Cane tissue responses to low temperature exotherm. 41:251-60.
Canopy management. Effect on fruit and wine sensory qualities. 41:193-200.
Evaporative potential in fruit zone. 41:137-41.
Sauvignon blanc vines. 41:74-6.
Shading effects on bud necrosis and fruitfulness. 41:168-75.
Rootstock effects on performance in nematode-infected vineyard. 41:126-30.
Cluster shading. 41:193-200.
Cold hardness. Pruning effects on. 41:251-60.
Disease. See Disease.
Ethephon treatments. 41:330-41.
False potassium treatments. 41:77-83.

gibberellin treatments. 41:142-6.
harvesting techniques. 41:176-81.
leaf removal treatments. 41:74-6.
leaf shading effects. 41:193-200.
Merlot. pruning effects on cold hardiness and water content. 41:251-60.
mineral nutrition. 41:77-83, 241-50.
muscadine. mechanical pruning. 41:273-6.
nematode resistance. 41:126-30.
nitrogen distribution and translocation. 41:241-50.
pruning, effects on cold hardiness of Merlot cane and bud tissues. 41:251-60.
putrecine levels. 41:121-5.
Vitis vinifera, pruning effects on cold hardiness and water content. 41:241-60.

H

Harvesting techniques. hand- vs. machine harvesting of Chardonnay. 41:176-81.
Haze, wine. yeast acid proteases for reduction. 41:147-55.
Herbaceous receptor host for closteroviruses from leafroll-infected vines. 41:201-3.
High performance liquid chromatography. See Chromatography.
Histamine formation during winemaking. 41:160-7.
Hot water treatment for crown gall. 41:325-9.
HPLC. See Chromatography.

I

Identification. of arabinogalactan. 41:29-36.
of catechin-gallates in white grapes. 41:87-9.
of ellagic acid. 41:43-7.
of phenolics in red grapes. 41:223-8.
of phenolics in white grapes. 41:87-9.
viruses. 41:204-3.
Immunosorbent electron microscopy (ISEM) for virus identification. 41:201-3.
Inhibitor(s). of KHT precipitation. 41:16-20.
Inoculation. of Kloeckera apiculata to must. 41:156-9.
of Saccharomyces cerevisiae to must. 41:156-9.
Insoluble grape solids. effects on decanoic acid production during vinification. 41:48-56.
effects on malolactic bacteria during vinification. 41:48-56.
ISEM. See Immunosorbent electron microscopy.
Isolation. of phenolic compounds in red grapes. 41:204-6.
of phenolic compound in white grapes. 41:87-9.

JK

Juice, grape. ellagic acid in. 41:43-7.
ethyl carbamate precursors in. 41:269-72.
muscadine. 41:43-7.
K1 killer toxin gene. 41:37-42.
K1/K2 double killer strains. 41:37-42.
Kinetic description of alcoholic fermentation. 41:319-24.
Kloeckera apiculata for wine haze reduction. 41:147-55.
influence on volatile composition of wine fermented without sulfur dioxide. 41:313-18.
Lactic acid bacteria. comparison of for energy-yielding (ATP) malolactic enzyme systems. 41:215-18.
control of in winemaking. 41:7-11.
control of in winemaking. 41:7-11.
Lactobacillus. Nisin sensitivity. 41:1-6, 7-11.
Leaf, grapevine. removal effects on Sauvignon blanc wine sensory qualities. 41:74-6.
shading effects on Cabernet Sauvignon fruit and wine sensory properties. 41:193-200.
tissue analysis. 41:77-83, 121-5.
Leafroll. 41:201-3.
Leuconostoc oenos. insoluble grape solids influence on fermentation. 41:48-56.
Nisin sensitivity. 41:1-6, 7-11.
Light intensity effects on bud necrosis and bud fruitfulness of Thompson Seedless. 41:168-75.
Low temperature exotherm, responses of bud and cane tissues of Vitis vinifera. 41:251-60.

M

Malolactic bacteria. growth during vinification. 41:43-56.
Malolactic fermentation. biogenic amine formation during. 41:160-7.
Cabernet Sauvignon wines. 41:57-67.
color and phenolic changes. 41:57-67.
decanoic acid production. 41:48-56.
energy-yielding (ATP) enzyme systems. 41:215-18.
Nisin effects on. 41:1-6, 7-11.
Mechanical harvesting. See also Harvesting. of Chardonnay. 41:176-81.
Mechanical pruning of muscadine. 41:273-6.
Merlot grapevines. pruning effects on cold hardiness and water content during deacclimation of cane and bud tissue. 41:251-60.
Metallic cations in wine. 41:284-8.
Microclimate, grapevine. See also Canopy management.
Botrytis cinerea control. 41:137-41.
evaporative potential in the fruit zone. 41:137-41.
leaf and cluster shading of Cabernet Sauvignon. 41:193-200.
shading effects on bud necrosis and fruitfulness. 41:168-75.
Microvinification. color and phenolic changes in Cabernet Sauvignon wine. 41:57-67.
tissue analysis of grapevines. 41:251-60.
Thompson Seedless. 41:77-84, 121-5.
Muscadine grapevines. pruning effects on yield and quality. 41:273-6.
Must oxidation. 41:346-9.

N
Necrosis. shading effects on in Thompson Seedless. 41:168-75.
Nematode-resistant rootstock. 41:126-30.
Nicotiana benthamiana as herbaceous receptor host for closeroviruses from leafroll-affected grapevines. 41:201-3.
Nisin. 41:1-6, 7-11.
in leaf tissue of Thompson Seedless. 41:77-83.
spring-applied. 41:241-50.
translocation. 41:241-50.

O
Oloroso sherry acid content. 41:12-15.
Oxidation. must. 41:346-9.
wine. of caffeic acid. 41:84-6.
Pectin content of maturing Cabernet Sauvignon berries. 41:111-15.
Pediococcus. sensitivity to Nisin. 41:1-6, 7-11.
Phenolic(s). acids and aldehydes in brandies. 41:342-5.
behavior during must oxidation. 41:346-9.
changes in Cabernet Sauvignon wines made by simultaneous yeast/bacterial fermentation and pomace contact. 41:57-67.
identification in red grapes. 41:204-6.
in white grapes. 41:87-9.
Phloem transport. 41:301-5.
Phyllotaxis. 41:306-12.
Polyamines in grapevine leaves. 41:77-83, 121-5.
Polymeric phenols in grape tissue extracts. 41:223-8.
Polyphenols in grape tissue extracts. 41:223-8.
Poly saccharides in red wine. 41:29-36.
Pomace contact effects on color and phenolics in Cabernet Sauvignon wine. 41:57-67.
Potassium. bitartrate, inhibitors in wine. 41:16-20.
precipitation in wine stabilization. 41:16-20.
deficiency, in Thompson Seedless vines. 41:77-83, 121-5.
false. 41:77-83.
Precipitation. potassium bitartrate. 41:16-20.
Precursors of ethyl carbamate. 41:68-73, 189-92, 269-72.
Proline content in sherry. 41:12-15.
Propagation material, crown gall control in. 41:235-9.
Proteases, yeast acid. effectiveness in wine haze reduction. 41:147-55.
Protein stability. haze formation in wine. 41:147-55.
Proton extrusion as an indicator of adaptive state if yeast starters for continuous sparkling wine production. 41:219-22.
Pruning effects on cold hardiness of Merlot. 41:251-60.
effects on yield and quality of muscadine. 41:273-6.
Putrecine in grapevines displaying symptoms of potassium deficiency. 41:77-83, 121-5.

R
Red wine. See Wine.
Reserve nitrogen, grapevine. See Nitrogen.
Thompson Seedless grapevines, berry drop. 41:142-6.
bud fruitfulness. 41:168-75.
bud necrosis. 41:168-75.
gibberellin treatments. 41:142-6.
leaf tissue analysis. 41:77-83, 121-5.
potassium deficiency. 41:77-83, 121-5.
ripening. 41:142-6.
waterberry. 41:301-5.

Torulaspora delbrueckii influence on volatile composition of wines fermented without sulfur dioxide. 41:313-18.

Translocation of nitrogen in vines. 41:541-50.

Trellising. See also Canopy management.
for increased evaporative potential in the fruit zone. 41:137-41.
leaf and cluster shading effects on Cabernet Sauvignon fruit and wine sensory qualities. 41:193-200.

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN). 41:277-83.

Tyramine formation during winemaking. 41:160-7.

Vineyard. nematode resistance. 41:126-30.
replant. 41:126-30.

Vitification. decanoic acid production during. 41:48-56.
genomic integration of yeast K1 killer toxin into wine yeasts. 41:37-42.
volatile compound production during. 41:48-56.
yeast growth during. 41:48-56.

Virus. closteroviruses from leafroll-affected vines. 41:201-3.

Vitis rotundifolia, mechanical pruning. 41:273-6.
Vitis vinifera, pruning effects on cold hardiness and water content. 41:251-6.

White grapes. See Grapes.

White Riesling wine ultrafiltration. 41:207-14.

Wine(s). acid content of sherries. 41:12-15.
aromatics. 41:229-31.
leafl removal effects on. 41:74-6.
Missouri Seyval blanc sensory and chemical analyses. 41:116-20.
autoxidative reaction of caffeic acid in. 41:84-6.
benzyl alcohol oxidase isolation and characterization. 41:295-300.
biogenic amines formation. 41:160-7.
blending. 41:232-40.
browning. 41:84-6.
Cabernet Sauvignon color and phenolic changes. 41:57-67.
shading effects on sensory properties. 41:193-200.
caffeic acid in. 41:84-6.
carbohydrate colloids. 41:29-36.
Champagne. aging. 41:21-8.