1993 Revised

Guide to Authors

American Journal of Enology and Viticulture

The American Journal of Enology and Viticulture publishes full length research papers, review papers, Research Notes, and Technical Briefs on all subjects related to enology and viticulture.

The AJEV does not accept articles published in or submitted to other publications; however, Technical Briefs may contain material published elsewhere. Authorship of papers in the Journal is not limited to members of the American Society for Enology and Viticulture.

The AJEV does not pay authors for their manuscripts.

Publication Rights: The AJEV reserves first right of refusal to publish any paper or poster presented at the ASEV Annual Meetings. Papers which may be more appropriate for another publication may be released by the Editor if requested in writing by the author(s). In such cases, Technical Briefs or abstracts may be requested.

Reviews: Each manuscript receives at least two reviews. Additional authorities are consulted as necessary to confirm the scientific merit of any part or all of the manuscript. The reviewers are asked to return their recommendations and comments within six weeks, though it sometimes takes longer. Suggestions and changes required by the referees will be forwarded to the corresponding author.

The Editor and Associate Editors are responsible for judging the suitability of each article for publication. The Editors reserve the right to edit manuscripts to make them conform with the adopted style and/or to return them to the authors for revision.

Corrections: Corrections will be published, if necessary, in the Number 4 issue of each Volume. Authors are requested to call to the attention of the Editor any significant errors in their published work.

Printing Charges: We currently do not charge authors for the printing of manuscripts. However, the AJEV reserves the right to charge authors for the extra printing costs of unusual or improperly submitted materials and for extensive author alterations.

Reprints: Reprints may be ordered at the time the page proofs are sent to the authors. Order sheets, including the cost of reprints, will accompany the proofs.

In cases where the author has access to a more economical method of reproducing the published article, he may do so provided all AJEV citations and page numbers are visible.

Publication Release Policy: © All rights reserved. Written permission to include in other scientific publications reprints of and quotations from articles published in the journal may be granted by the Editor on the condition that full credit be given both the AJEV and the author(s) and that volume, number, page numbers, and year of publication be stated. Neither the AJEV nor the ASEV is responsible for statements or opinions printed in its publications; they represent the views of the authors or persons to whom they are credited and are not binding on the American Society for Enology and Viticulture as a whole.

General Information: All full-length manuscripts must be original research, neither simultaneously under consideration or submission nor previously published elsewhere. Research Notes are classified as reports of new applications or interpretations of existing data; Technical Briefs are for the dissemination of information relevant to the interests of the members of the Society and may not necessarily be original research. Research Notes must neither be currently submitted nor previously published elsewhere. Technical Briefs may include previously published material.

All papers submitted must be written in English. Please be sure translations are as clear as possible to avoid misinterpretation of data. Four copies of the manuscripts should be submitted to:

The Editor
American Journal of Enology and Viticulture
P.O. Box 700
Lockeford, California 95237-0700
USA

All manuscripts mailed from outside the US should be sent by registered mail. The AJEV office hours are 9 a.m. to 5 p.m. Pacific time, Monday through Friday, and the telephone number is 209-727-3439; FAX 209-727-5004.

Please provide the telephone number and telefax number of the corresponding author whenever possible.

Preparation of Manuscript: Manuscripts should be typewritten double-spaced on line-numbered 8 X 11 inch (21.5 X 28 cm) paper with pages numbered. Four copies must be submitted to the Editor. Authors whose primary language is not English should have manuscripts proofread by English-speaking peers before submitting. Tables should be on numbered pages following the Literature Cited section, followed by the legends for figures on a separate numbered page. Two sets of camera-ready figures and four copies should be included (see sections on figures and tables).

Organization of Manuscript: A manuscript
Examples of Literature Citations

Journal article

Paper accepted for publication

Book

Chapter

Thesis

Paper presented

Proceedings

Unpublished data

These references should not be included in Literature Cited, but should be cited parenthetically in the text showing name, source of data, and year. (V. L. Singleton, unpublished data, 1984) (L. P. Christensen, personal communication, 1989).
When creating composites, match photographs for subject content, background density, and similarity of contrast. Do not combine line drawings and photographs in a composite figure. Photographs in a composite should be mounted on hard cardboard, with the edges in contact; space between photographs will be inserted in printing. Submit two original composite figures or plates for publication and two prints of equivalent quality for review purposes. Black and white illustrations are preferred, but color illustrations may be inserted in printing. Submit two original composite figures, the parts of the composite should be mounted on cardboard in the appropriate positions when the manuscript is submitted.

Submit two originals and four copies of each line drawing or glossy print. Frame graphs and affix index marks to ordinates and abscissae. Avoid too bold lettering, numbers, and lines for coordinate axes and curves.

If line drawings or graphs are to be published as a composite figure, the parts of the composite should be mounted on cardboard in the appropriate positions when the manuscript is submitted.

Tables: Submit tables that are self-explanatory and include enough information so that each table is intelligible without reference to the text or other tables. The title should summarize the information presented in the table without repeating the subheadings. Be sure that the layout of the table presents the data clearly. Subheadings should be brief. Non-standard abbreviations should be explained in footnotes. Footnotes are designated with superscript lower case letters or other appropriate symbols. Ditto marks should never be used.

When only a few values are to be presented, this should be done in the text rather than in a table. Data that are presented in tables should not be repeated in figures.

Cite tables in numeric order in the manuscript. Information presented in a table should agree with that in the text.

Trade Names: The names of manufacturers or suppliers of special materials should be given (including city, state, and zip code). Trade names must be capitalized and followed by ® or ™. In experimentation, a chemical compound should be identified by its common name (if such name exists) or by the chemical name and structural formula.

Nomenclature: The binomial or trinomial (in italics) and the authority must be shown for plant, insects, and pathogens when first used in the abstract and in the text. Following citation in Materials and Methods, the generic name may be abbreviated to the initial, except when confusion could arise by reference to other genera with the same initial. Algae and microorganisms referred to in the manuscript should be identified by a collection number or that of a comparable listing.

For varietal names, the AJEV conforms to the spellings listed in the BATF publication Working List of US Wine Grape Varieties.

Numerals: Spell out all numbers or fractions which begin a sentence. Do not use a hyphen to replace the preposition “to” between numerals (13 to 22 min, 3°C to 10°C) within the text; however, hyphens may be used in tables, figures, graphs, and in parentheses.

Write out numerals one through nine, except with units of measure. Write out and hyphenate simple fractions (e.g., two-thirds), with the same exceptions applying as for the use of hyphens. It is usually desirable to use decimals instead of fractions.

Time and Dates: When reporting time, use the 24 hour time system with four digits; the first two for hours and the last two for minutes (e.g., 0400 h for 4:00 a.m., 1630 h for 4:30 p.m.). Dates are reported as day of month, month, and then year (19 April 1985).

Units: Wine volumes should be reported as liters (L) or milliliters (mL). Hectoliters are not recommended. Grape weights should be reported as grams (g), kilograms (kg), and metric tons (t).

Temperature should be reported as degrees Celsius only.

Parts per million (ppm) and parts per billion (ppb) are not recommended. The equivalent milligrams per L (mg/L) and micrograms per liter (µg/L) are preferred.

Wine or juice yield should be reported as liters per 1000 kg (L/1000 kg) or milliliters per kilogram (mL/kg) (equivalent).

Land surface area should be expressed as hectares.

Statistical Methods: Authors must report enough details of their experimental design so that the results can be judged for validity and so that previous experiments may serve as a basis for the design of future experiments.

Multiple comparison procedures such as Duncan's multiple range test are frequently misused. Such misuse may result in incorrect scientific conclusions. Multiple range tests should be used only when the treatment structure is not well understood (e.g., studies to compare cultivars). When treatments have a logical structure, significant differences among treatments should be shown using t- or F-tests.

Usually field experiments, such as studies on crop yield and yield components, that are sensitive to environmental interactions and in which the crop environment is not rigidly controlled or monitored, should be repeated (over time and/or space) to demonstrate that similar results can (or cannot) be obtained in another environmental regime. Replicate chemical or sensory evaluations should be done to show reproducibility and consistency, respectively.

Abbreviations and Symbols: Replacement of certain unwieldy chemical names by abbreviations may occur as a convenience, though only well known abbreviations should be used (e.g., ATP, DNA). Standard chemical symbols may be used without definition (Ca,
NaOH). If the article uses several abbreviated forms, define them all in a single paragraph where the first abbreviation is used.

With the exception of those standard for international usage (e.g., HPLC, ATP), do not use abbreviations in the title or abstract. The metric system is standard, and SI units should be used (other units may be placed in parenthesis after the SI).

Please note that liter is abbreviated in the AJEV by a capital L, not lower case, to avoid confusion with the number 1 in the typefaces used in the journal.

Symbols and abbreviations on figures and tables must also conform.

AJEV Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation or Symbol</th>
<th>Term</th>
<th>Abbreviation or Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetoxy</td>
<td>AcO</td>
<td>dextro (preceding chemical name)</td>
<td>(small cap) D</td>
</tr>
<tr>
<td>acetyl</td>
<td>Ac</td>
<td>dextrotoratory (preceding chemical name)</td>
<td>(italic) d (+)</td>
</tr>
<tr>
<td>active ingredient</td>
<td>a.i.</td>
<td>diameter</td>
<td>d</td>
</tr>
<tr>
<td>Adenosine 5' diphosphate (adenosine diphosphate)</td>
<td>ADP</td>
<td>direct current</td>
<td>DC</td>
</tr>
<tr>
<td>Adenosine 5' monophosphate (adenosine monophosphate)</td>
<td>AMP</td>
<td>dissociation constant, negative logarithm of effective dose, 50%</td>
<td>pK, ED50</td>
</tr>
<tr>
<td>Adenosine 5' triphosphate (adenosine triphosphate)</td>
<td>ATP</td>
<td>electromotive force</td>
<td>emf</td>
</tr>
<tr>
<td>alternating current</td>
<td>AC</td>
<td>electron volt</td>
<td>eV</td>
</tr>
<tr>
<td>ampere</td>
<td>A</td>
<td>equivalent</td>
<td>equiv.</td>
</tr>
<tr>
<td>and others</td>
<td>(italic) et al.</td>
<td>exponential</td>
<td>exp.</td>
</tr>
<tr>
<td>ante meridiem</td>
<td>a.m.</td>
<td>figure (abbreviate only in parenthesis, tables and legends)</td>
<td>Fig.</td>
</tr>
<tr>
<td>atmosphere (see also standard atmosphere)</td>
<td>Atm</td>
<td>foot</td>
<td>ft</td>
</tr>
<tr>
<td>average (abbreviate in tables and equations only)</td>
<td>av.</td>
<td>foot-candle</td>
<td>ft-c</td>
</tr>
<tr>
<td>°Balling ('Brix preferred)</td>
<td>°B</td>
<td>foot-pound</td>
<td>ft-lb</td>
</tr>
<tr>
<td>boiling point</td>
<td>bp</td>
<td>for example (italic)</td>
<td>e.g.</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>btu</td>
<td>freezing point</td>
<td>fp</td>
</tr>
<tr>
<td>°Brix</td>
<td>°Brix</td>
<td>frequency modulation</td>
<td>FM</td>
</tr>
<tr>
<td>calorie (gram calorie; see also kilocalorie)</td>
<td>cal</td>
<td>gram</td>
<td>g</td>
</tr>
<tr>
<td>°Celsius</td>
<td>°C</td>
<td>gravity (gravitation constant)</td>
<td>(italic) g</td>
</tr>
<tr>
<td>°centigrade</td>
<td>°C</td>
<td>hectare</td>
<td>ha</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
<td>hecto- (X 102)</td>
<td>h</td>
</tr>
<tr>
<td>centimeter-gram-second</td>
<td>cgs</td>
<td>hectoliter</td>
<td>hL</td>
</tr>
<tr>
<td>centimeter-gram-second</td>
<td>cgs</td>
<td>hertz</td>
<td>hz</td>
</tr>
<tr>
<td>chemically pure</td>
<td>CP</td>
<td>high performance liquid chromatography</td>
<td>HPLC</td>
</tr>
<tr>
<td>coefficient</td>
<td>coeff.</td>
<td>horsepower</td>
<td>hp</td>
</tr>
<tr>
<td>coenzyme A</td>
<td>CoA</td>
<td>hour</td>
<td>hr</td>
</tr>
<tr>
<td>concentrate</td>
<td>conc.</td>
<td>hydrogen ion concentration, negative logarithm of hyperbolic cosecant</td>
<td>pH, csch</td>
</tr>
<tr>
<td>concentration</td>
<td>concn.</td>
<td>hyperbolic cosine</td>
<td>cosh</td>
</tr>
<tr>
<td>constant</td>
<td>const.</td>
<td>hyperbolic cotangent</td>
<td>coth</td>
</tr>
<tr>
<td>cosecant</td>
<td>csc</td>
<td>hyperbolic sine</td>
<td>sinh</td>
</tr>
<tr>
<td>cosine</td>
<td>cos</td>
<td>inch</td>
<td>in</td>
</tr>
<tr>
<td>cotangent</td>
<td>cot</td>
<td>infrared</td>
<td>IR</td>
</tr>
<tr>
<td>counts per second</td>
<td>counts/sec</td>
<td>inhibitor constant</td>
<td>K</td>
</tr>
<tr>
<td>cubic centimeter</td>
<td>cm3</td>
<td>inside diameter</td>
<td>i.d.</td>
</tr>
<tr>
<td>decibel</td>
<td>dB</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>degree (angular)</td>
<td>°</td>
<td>kelvin</td>
<td>°K</td>
</tr>
<tr>
<td>degree Celsius</td>
<td>°C</td>
<td>kilocalorie</td>
<td>kcal</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>°F</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>deoxyribonucleic acid (deoxyribonucleate)</td>
<td>DNA</td>
<td>kilometer</td>
<td>km</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation or Symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilowatt</td>
<td>kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lethal dose, 50%</td>
<td>LD$_{50}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>levo- (preceding chemical name)</td>
<td></td>
<td>(small cap) L</td>
<td></td>
</tr>
<tr>
<td>levorotary (preceding chemical name)</td>
<td></td>
<td>(small cap) L</td>
<td></td>
</tr>
<tr>
<td>liter</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logarithm (to base 10; common logarithm)</td>
<td>log</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logarithm, natural</td>
<td>ln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lumen</td>
<td>lm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lux</td>
<td>lx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass</td>
<td>(italic) m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass charge on electron</td>
<td>(italic) m/e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>melting point</td>
<td>mp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>meta- (preceding chemical name)</td>
<td></td>
<td>(italic) m</td>
<td></td>
</tr>
<tr>
<td>meter</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michaelis constant</td>
<td>k_m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro- (10^{-6})</td>
<td></td>
<td>µ</td>
<td></td>
</tr>
<tr>
<td>microequivalent</td>
<td>µeq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microgram</td>
<td>µg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microliter</td>
<td>µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micrometer (micron)</td>
<td>µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miles per hour</td>
<td>mph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milli- (10^{-3})</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milliampere</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milligram</td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milliliter</td>
<td>mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>millimeter</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>millimole (mass)</td>
<td>mmol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>millivolt</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum</td>
<td>min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minute (angular)</td>
<td>min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minute (time)</td>
<td>min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitochondrial deoxyribonucleic acid</td>
<td>mtDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>molar (concentration)</td>
<td>(italic) M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mole</td>
<td>mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>month</td>
<td>mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nano- (10^{-9})</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nanometer</td>
<td>nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nicotinamide adenine dinucleotide</td>
<td>NAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nicotinamide adenine dinucleotide, reduced</td>
<td>NADH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nicotinamide adenine dinucleotide phosphate (reduced)</td>
<td>NADPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal (concentration)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal (preceding chemical name)</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not significant</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nuclear magnetic resonance</td>
<td>NMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohm</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation or Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ortho- (position; preceding chemical name)</td>
<td>(italic) o</td>
</tr>
<tr>
<td>ounce (avoirdupois)</td>
<td>oz</td>
</tr>
<tr>
<td>outside diameter</td>
<td>o.d.</td>
</tr>
<tr>
<td>page</td>
<td>p</td>
</tr>
<tr>
<td>pages</td>
<td>pp</td>
</tr>
<tr>
<td>parts per billion</td>
<td>ppb</td>
</tr>
<tr>
<td>parts per million</td>
<td>ppm</td>
</tr>
<tr>
<td>when applicable, use</td>
<td>mg/L or µL/L$^{-1}$</td>
</tr>
<tr>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>per</td>
<td>/</td>
</tr>
<tr>
<td>percent</td>
<td>%</td>
</tr>
<tr>
<td>peta- (10^{15})</td>
<td>P</td>
</tr>
<tr>
<td>pico- (10^{-12})</td>
<td>p</td>
</tr>
<tr>
<td>post meridiem</td>
<td>p.m.</td>
</tr>
<tr>
<td>pound (avoirdupois)</td>
<td>lb</td>
</tr>
<tr>
<td>pounds per square inch</td>
<td>lb/in2</td>
</tr>
<tr>
<td>probability</td>
<td>(italic) p</td>
</tr>
<tr>
<td>racemic (optical configuration, a mixture of dextro- and levo-)</td>
<td>(small caps) DL</td>
</tr>
<tr>
<td>(preceding chemical name)</td>
<td>Q_{10}</td>
</tr>
<tr>
<td>rate change of a process with 10^o increase</td>
<td></td>
</tr>
<tr>
<td>retardation factor (distance unknown factor has traveled relative to a solvent front in chromatography)</td>
<td></td>
</tr>
<tr>
<td>revolutions per minute</td>
<td>rpm</td>
</tr>
<tr>
<td>ribonucleic acid</td>
<td>RNA</td>
</tr>
<tr>
<td>roentgen equivalent man</td>
<td>rem</td>
</tr>
<tr>
<td>second (angular)</td>
<td>sec</td>
</tr>
<tr>
<td>second (time)</td>
<td>sec</td>
</tr>
<tr>
<td>secondary (preceding chemical name; s subscript (e.g., BAs)</td>
<td></td>
</tr>
<tr>
<td>significant at 5% level</td>
<td>*</td>
</tr>
<tr>
<td>significant at 1% level</td>
<td>**</td>
</tr>
<tr>
<td>sine</td>
<td>sin</td>
</tr>
<tr>
<td>species (only after generic name)</td>
<td>sp., spp.</td>
</tr>
<tr>
<td>species nova (only after specific epithet)</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>specific gravity</td>
<td>sp gr</td>
</tr>
<tr>
<td>specific heat</td>
<td>sp ht</td>
</tr>
<tr>
<td>specific volume</td>
<td>sp vol</td>
</tr>
<tr>
<td>square</td>
<td>sq</td>
</tr>
<tr>
<td>standard atmosphere</td>
<td>atm</td>
</tr>
<tr>
<td>standard deviation</td>
<td>SD</td>
</tr>
<tr>
<td>standard error</td>
<td>SE</td>
</tr>
<tr>
<td>standard temperature and pressure</td>
<td>STP</td>
</tr>
<tr>
<td>substrate constant</td>
<td>(italic) K_s</td>
</tr>
<tr>
<td>surface tension</td>
<td>N/m</td>
</tr>
<tr>
<td>tangent</td>
<td>tan</td>
</tr>
<tr>
<td>tera- (10^{12})</td>
<td>T</td>
</tr>
<tr>
<td>tertiary (preceding chemical name)</td>
<td>(italic) tert-</td>
</tr>
<tr>
<td>that is</td>
<td>(italic) i.e.</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation or Symbol</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>thin layer chromatography</td>
<td>TLC</td>
</tr>
<tr>
<td>tonne (metric ton)</td>
<td>t</td>
</tr>
<tr>
<td>transfer ribonucleic acid</td>
<td>tRNA</td>
</tr>
<tr>
<td>ultrahigh frequency</td>
<td>uhf</td>
</tr>
<tr>
<td>ultraviolet</td>
<td>UV</td>
</tr>
<tr>
<td>varietas (variety; only after specific epithet)</td>
<td>var.</td>
</tr>
<tr>
<td>versus (italic)</td>
<td>V</td>
</tr>
</tbody>
</table>

If special fonts are not available to you, please indicate italic by single underline, small caps by double underline, caps by triple underline, and bold face by wavy underline.

Abgueguen, O., and R. B. Boulton. The crystallization kinetics of calcium tartrate from model solutions and wines. 44:65-75.

Andioc, V. See J. F. Cavin. 44:76-80.

Andricopoulos, N. See V. Voulgaropoulos. 42:73-5.

Asmundson, R. V. See W. J. Kelly. 40:277-82.

Barillière, J. M. See V. Cheynier. 40:36-42.

Barre, P. See M. Bely. 41:319-24.

See J. M. Salmon. 44:56-64.

Bartolucci, R. Philosophical considerations in converting to organic vineyard production. 43:294-5.

See W. N. Lipe. 43:355-61.

See J. M. Salmon. 44:56-64.

Ben-Tal, Y. Effects of gibberellin treatments on ripening and berry drop from Thompson Seedless grapes. 41:142-6.

Benz, M. See W. M. Kliwer. 40:259-64.

Berna, A. See A. Mulet. 43:221-6.

Bertrand, A. See A. Miele. 44:180-6.

Bhutani, V. P. See V. K. Joshi. 41:229-31.

Bhutani, V. P. See V. K. Joshi. 41:229-31.

Biscay, P. J. See L. E. Williams. 42:113-17.

See L. S. Lagace. 41:147-55.

Bitteur, S., C. Tesnière, J. Sarris, R. Baumes, C. Bayonove, and C.
AUTHOR INDEX — 487

Blaie, A. See M. Goethgebeur. 41:295-300.

See J. T. English. 41:137-41.
See J. J. Marois. 44:26:5.

Boggero, J. See L. P. Christensen. 41:77-83.

Bouard, J. See A. Miele. 44:180-6.

Bouard, J. See A. Miele. 44:180-6.

Bowen, P. See W. M. Kliewer. 40:259-64.

Bowers, J. E., E. B. Bandman, and C. P. Meredith. DNA fingerprint characterization of some wine grape cultivars. 44:266-74.

, C. Bosso, and M. Moutounet. Isolation, purification, and characterization of an arabinogalactan from a red wine. 41:29-36.

See M. J. Lacey. 44:168-72.

Brun, S. See M. Goethgebeur. 41:295-300.

Burns, G. See S. Fujinawa. 41:350-4.

Bussey, H. See C. Boone. 41:37-42.

Cabezudo, M. D. See T. Herraz. 41:313-18.

Cacho, J., and J. E. Castells. Fractionation of phenolic compounds from grapes by size exclusion liquid chromatography with HPLC instrumentation. 42:327-35.

, P. Fernández, V. Ferreira, and J. E. Castells. Evolution of five anthocyanidin-3-glucosides in the skin of the Tempranillo, Moristel, and Garnacha grape varieties and influence of climatological variables. 43:244-8.

Calvayrac, R. See D. Troton. 40:175-82.

Casp, A. See M. Pérez-Cerrada. 44:292-6.

Chambers, K. R. Benzyl alcohol as an inhibitor of the development of Botrytis cinerea in vitro and in packed table grapes. 41:289-94.

See D. Troton. 40:175-82.

Christensen, L. P., J. Boggero, and M. Bianchi. Comparative leaf tissue analyses of potassium deficiency and a disorder resembling potassium deficiency in Thompson Seedless grapevines. 41:77-83.

Clingeleffer, P. R., and L. R. Krake. Responses of Cabernet franc grape-
vines to minimal pruning and virus infection. 43:31-7.
See E. H. Rohl. 44:81-5.
Collins, J. K. See P. M. Perkins-Veazie. 43:79-82.
Conradie, W. J. Distribution and translocation of nitrogen absorbed during early summer by two-year-old grapevines grown in sand culture. 42:180-90.

Conradie, W. J. Distribution and translocation of nitrogen absorbed during late spring by two-year-old grapevines grown in sand culture. 41:241-50.

Conterno, L. See C. Delfini. 44:452-8.

Coombe, B. G. Research on development and ripening of the grape berry. 43:101-10.

Costa, A. See C. Delfini. 44:86-92.

Costas, C. L. See L. A. Regueiro. 44:405-8.

Costa, A. See C. Delfini. 44:86-92.

See D. Troton. 40:175-82.

See D. R. Webster. 44:275-84.

Eschenbruch, R. See S. J. de Mora. 44:327-32.

Eschnauer, H. R. See B. L. Gulson. 43:180-90.

Etévant, P. X. See J. F. Cavin. 44:76-80.

Evans, R. G. See S. E. Spayd. 44:378-86.
See R. L. Wample. 44:159-67.
in wines and in yeast cells. 44:49-55.

I

Ingels, C. Sustainable agriculture and grape production. 43:296-8.

J

James, D. See P. L. Monette. 41:201-3.

K

Kawakami, A. K. See S. E. Spayd. 44:378-86.

See J. T. English. 41:137-41.
See J. Perez. 41:168-75.
See A. Zeliiske. 40:47-51.

Kodama, S. See S. Fujinawa. 43:362-6.

Krake, L. R. See P. R. Clingeleffer. 43:31-7.

Lee, P. See S. J. de Mora. 44:292-6.

Liyanage, C., D. A. Luvisi, and D. O. Adams. The glutathione content of grape berries is reduced by fumigation with methyl bromide or methyl iodide. 44:8-12.

Lloyd, J. See P. M. Perkins- Veazie. 43:79-82.

See A. A. Gardea. 44:232-5.

Lopez Rubio, J. E. See A. A. Gardea. 44:405-8.

Loueiro, V. See M. Malfieto-Ferreira. 41:219-22.

Luvisi, D. A. See C. Liyanage. 44:8-12.

Malfieto-Ferreira, M., J. P. Miller-Guerra, and V. Loureiro. Proton extrusion as indicator of the adaptive state of yeast starters for the continuous production of sparkling wines. 41:219-22.

Maquieira, A. See M. Perez-Cerrada. 44:292-6.

See M. Perez-Tortajada. 44:118-20.

See M. Calull. 42:268-73.

Marinén-Font, A. See S. J. de Mora. 41:160-7.

See J. T. English. 41:137-41.

Martin, M., and M. C. De La Torre. Determination of molecular weight of polysaccharides in musts and wines by HPLC. 40:221-3.

Martin, J. See J. Granett. 41:236-40.

Martin, J. D. See J. G. Benitez. 44:400-4.

Martinez de la Ossa, E., and M. A. Galan Serrano. Salt effect on the composition of alcohols obtained from wine by extractive distillation. 42:252-4.

Masson, G. See V. Cheynier. 44:393-9.

Maujean, A. See F. Brissonnet. 42:97-102; 44:297-301.

See J. M. Salmon. 44:56-64.

McCarthy, M. G. Clonal and pruning effects on Muscat & petite grains during vinification fermentations. 42:199-208.

McClaran, E. D. See P. D. Scudamore-Smith. 41:57-67.

McDonald, M. R. See R. M. Avedovetch. 43:253-60.

N

Nicholas, P. R. See K. Ophel. 41:325-9.

Nicholas, P. R. See K. Ophel. 41:325-9.

Nicholas, P. R. See K. Ophel. 41:325-9.

O

P

Peterson, J. C. See D. R. Webster. 44:275-84.

Pohl, C. A. See S. A. Kupina. 44:21-5.

Pepper, T. E. See C. D. Clary. 41:176-81.

Pepper, J., and W. M. Kliwer. Effect of shading on bud necrosis and bud fruitfulness of Thompson Seedless grapes. 41:168-75.

Petersen, J. C. See D. R. Webster. 44:275-84.

Polo, M. C. See E. Pueyo. 44:255-60.

Popov, D. See B. Tchorbanov. 44:93-8.

R

Ramos, T., A. Fleuriet, M. Rascalou, and J. J. Machiex. The effect of anaerobic metabolism of grape berry skins on phenolic compounds. 44:13-16.

Radler, F. Possible use of Nisin in winemaking. I. Action of Nisin against lactic acid bacteria and wine yeasts in solid and liquid media. 41:1-6.

Ramos, T., A. Fleuriet, M. Rascalou, and J. J. Machiex. The effect of anaerobic metabolism of grape berry skins on phenolic compounds. 44:13-16.

Ramos, T., A. Fleuriet, M. Rascalou, and J. J. Machiex. The effect of anaerobic metabolism of grape berry skins on phenolic compounds. 44:13-16.

Ramos, T., A. Fleuriet, M. Rascalou, and J. J. Machiex. The effect of anaerobic metabolism of grape berry skins on phenolic compounds. 44:13-16.

Ramos, T., A. Fleuriet, M. Rascalou, and J. J. Machiex. The effect of anaerobic metabolism of grape berry skins on phenolic compounds. 44:13-16.
AUTHOR INDEX

Ravaglia, S. See C. Delfini. 44:452-8.
Rayburn, D. J. See W. N. Lipe. 43:355-61.
Regnard, J. L. See C. Glad. 43:275-82.
Rieger, W. N. Lipe. 43:355-61.
Rowhani, A. Use of F(ab')2 antibody fragment in ELISA for detection of grapevine viruses. 43:38-40.
Rühl, E. H., and P. R. Clingeleffer. Effect of minimal pruning and virus inoculation on the carbohydrate and nitrogen accumulation in Cabernet franc vines. 44:81-5.

S
Salmon, J. M., O. Vincent, J. C. Mauricio, M. Bely, and P. Barre. Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. 44:56-64.
Sanchez, C. See C. Boone. 41:37-42.

Villa, T. G. See E. Longo. 42:141-4.
Villaroya, B. See T. Delgado. 41:342-5.
Vincent, O. See J. M. Salmon. 44:56-64.

W

Wagner, J. See C. Boone. 41:37-42.
Walker, M. A., and J. M. Boursiquot. Ampelographic and isozyme data correcting the misnaming of the grape rootstock SO4 at the University of California, Davis. 43:261-5.

X

Z

Williams, P. J. See M. A. Sefton. 44:359-70.
Willis, E. J. Waters. 42:123-7.

XYZ
Subject Index

A

A × R1 rootstock. 42:118-22.
Abbreviations and symbols for AJEV manuscripts. 44:484-5.
Acclimation. nitrogen fertilization effects on White Riesling. 44:159-67.
Acetobacter. 43:370-4.
Acetic acid production, by yeasts. 43:370-4.
Acetic acid(s). See also specific acids.
Acetaldehyde production. grape must lees and insoluble materials effects on. 44:86-92.
in white wines from high acid must. 44:371-7.
Agrobacterium radiobacter, and *Agrobacterium tumefaciens.*
Adenine. utilization by yeast during juice fermentation. 43:18-22.
Agmatine. effect on accumulation of putrescine in grape leaves. 43:239-43.
Amines. accumulation in Thompson Seedless vines. 41:77-83, 121-5.
Anisothermal conditions, alcoholic fermentation kinetics. 44:127-33,134-8.
Ammonium in sherry musts. 44:400-4.
Analysis. See also specific analysis.
Analysis. See also specific analysis.
Analysis. See also specific analysis.
Anisothermal conditions. alcoholic fermentation kinetics. 44:127-33,134-8.
Ammonium in leaf tissue of Thompson Seedless vines. 41:77-83.
Amphorae. 40:5-8.
Anhydrous ethanol. 42:252-4.
Anisothermal conditions. alcoholic fermentation kinetics. 44:127-33,134-8.
Anthocyanin-3-glucosides. 43:244-8.
Anhydrous ethanol. 42:252-4.
497

Cabernet franc grapevines. reproductive development. 40:52-60.
response to minimal pruning. 43:31-37; 44:81-5.
response to seasonal water deficit. 40:52-60.
response to virus inoculation. 44:81-5.
Cabernet Sauvignon grapevines. See also Grapevine(s).
budbreak. 44:153-8.
differential thermal analysis of deacclimating buds. 43:355-61.
leaf and cluster shading effects on fruit and wine sensory qualities. 41:193-200.
partial defoliation effects on root development and distribution. 43:71-8.
pectin content of berries during maturation. 41:111-15.
rootstock effects on partitioning. 42:118-22.
shading effects on fruit sensory properties. 41:193-200.
shoot orientation influence on growth and yield. 40:259-64.
sugar and organic acid extraction. 42:237-44.
Cabernet Sauvignon wine. color changes during fermentation and pomace contact. 41:57-87.
leaf and cluster shading effects on sensory qualities. 41:193-200.
phenolic changes during fermentation and pomace contact. 41:57-67.
Caffeic acid. antioxidative reactions of in wine. 41:84-6.
Caftaric acid. antioxidative reactions in wine. 41:84-6.
Calcium alginate. gel entrapped Schizosaccharomyces pombe for deacidi-
wine. See also Canopy management.
Calcium tartrate. crystallization kinetics. 44:65-75.
Carbonation effects on grape juices and grape-apple blends. 44:320-6.
Carbonic maceration. effect on Maréchal Foch must and wine. 40:170-4.
effect on mitochondrial injury. 43:129-33.
effect on procyanidin composition of Grenache blanc wines. 44:168-72.
Carboxylic acids in wine. 41:289-94.
Carmignane grapes. anaerobic metabolism effects on phenolic compounds. 44:13-16.
Catechin-gallates in white grapes. 41:87-9.
Champagne wine. foaming proteins in base wine. 44:297-301.
lipid content during second fermentation of Saccharomyces cerevi-
siae. 40:175-82.
must oxidation during pressing. 44:393-9.
stabilization. 41:16-20.
yeast autolysis during aging. 41:21-8.
Chaptalization. 42:19-25.
Characterization. of Majorcan varietal musts and wines. 43:221-6.
differential thermal analysis of deacclimating buds. 43:355-61.
fruit zone leaf removal' effect on yield, composition, and fruit rot. 43:139-48.
harvesting techniques. 41:176-81.
rootstock effects on performance in nematode-infected vineyard. 41:126-30.
xylem fluid flux and composition. 43:275-82.
Chardonnay juice. volatile composition. 44:359-70.
Chardonnay wine. evaluation of combinations of wine yeast and L. oenos in malolactic fermentation. 43:253-60.
prefermentation treatment. 40:36-42.
Chemiosmotic energy. 41:215-18.
Chloromequat. effects on early bunch stem necrosis. 42:290-4.
Chlorogenic acid. 41:84-6.
Chlorothalonil. russetting induced by. 42:281-9.
Chlormequat. effects on early bunch stem necrosis. 42:290-4.
Chromatography, gas. ethyl carbamate quantification. 43:339-43.
lactic acid quantification. 42:63-6.
anion content determination. 44:292-6.
droplet counter-current (DCCC). vitispirane precursor analysis. 41:277-83.
Chromatography, gradient ion. organic acid determination in juice and wine. 42:1-5.
caffeic acid determination. 41:84-6.
carboxylic acids determinations. 41:289-94.
ellagic acid identification and quantification. 41:43-7.
etheanolamine detection. 43:315-17.
fatty acids analysis in wine. 42:268-73.
organic acid analysis. 40:316-19.
phenoilic(s). acid and aldehyde concentrations. 41:342-5.
polymeric polyphenols isolation and determination. 41:223-8.
polysaccharide molecular weight determination in must and wine. 40:221-3.
procyanidin composition of wine. 44:168-72.
sugar and organic acid determinations in grapes. 42:237-44.
urea determination. 43:362-6.
caffeic acid determination. 41:84-6.
carboxylic acids determinations. 41:289-94.
ellagic acid identification and quantification. 41:43-7.
etheanolamine detection. 43:315-17.
fatty acids analysis in wine. 42:268-73.
organic acid analysis. 40:316-19.
phenoilic(s). acid and aldehyde concentrations. 41:342-5.
polymeric polyphenols isolation and determination. 41:223-8.
polysaccharide molecular weight determination in must and wine. 40:221-3.
procyanidin composition of wine. 44:168-72.
sugar and organic acid determinations in grapes. 42:237-44.
urea determination. 43:362-6.
Citraline, reaction with ethanol in ethyl carbamate formation. 44:309-12.
Clarification, juice. 42:133-6.
must. 44:452-8.
Climate, effects on grape composition and wine quality. 44:409-30.
effects on yeast diversity in musts. 42:141-4.
influence on anthocyanin-3-glucosides in skins. 43:244-8.
Clones. effect on yield and terpene concentration. 43:149-52.
Clostroviruses. 41:201-3.
Cluster exposure, influence on monoterpenes and wine olfactory evaluation of Golden Muscat. 44:198-204.
shading effects on Cabernet Sauvignon fruit and wine sensory qualities. 41:193-200.
Cognac. alambic distillation. 41:90-103.
nitrogen fertilization effects on. 44:159-67.
pruning effects on Vitis vinifera. 41:251-60.
seasonal deacclimation patterns. 43:171-9.
Color, wine. See also Anthocyanin, Browning.
Composition, fruit. See Fruit composition.
Concord juice. carbonation and ethyl maltol effects on quality. 44:320-6.
Continuous fermentation of wine. 40:292-8.
Cork(s). tin-lead capsule contribution to lead content of wine. 43:180-90.
Corky bark. 43:200-5.
Crop load, influence on photosynthesis and dry matter partitioning of Seyval vines. 44:139-47.
influence on reproductive and vegetative response of mature vines. 44:435-40.
influence on wine quality and grape composition. 44:409-30.
Crossflow microfiltration of wines. 41:182-5.
Differential thermal analysis, of deacclimating buds as affected by evaporative cooling. 43:355-61.
Dimethyl anthranilate as bird repellent. 40:140-2.
Dimethylsulfoxide in wine. 44:327-32.
Disease, grapevine. See also specific disease.
corky bark. 43:200-5.
fanleaf degeneration complex. 43:38-40, 200-5.
powdery mildew. 43:45-7.
Powdery mildew. 43:53-7.
Rupestris stem pitting. 42:175-9; 43:200-5.
type collection. 43:200-5.
Distillate, wine. effects of oxidation process on flavor. 40:31-5.
Distillation, alambic. 41:90-103.
Distribution. of 14C-assimilates. 41:306-12.
DMS. See dimethylsulfide.
DMSO. See Dimethylsulfoxide.
DNA fingerprinting, for grapevine. 44:266-74.
Dormancy, grapevine, hot water treated cuttings. 44:153-8.
hydrogen cyanamide effect on release from. 40:47-51.
seasonal deacclimation patterns. 43:171-9.
Drip irrigation. 42:227-32.
Dry matter partitioning of Cabernet Sauvignon grapevarieties. 42:113-17.
of Seyval grapevarieties. 44:139-47.
Durif. DNA fingerprinting. 44:266-74.
residues on grape berries. 44:205-10.
ELISA test for grapevine virus detection. 43:38-40.
Ellagic acid. identification and quantification in muscadine juice. 41:43-7.
Environmental and management practices affecting grape composition and wine quality. 44:409-30.
Enzymatic analyses. grape berry. 42:237-44.
wine. 43:58-62.
Enzyme(s). extraction. 41:295-300.
Hydrolysis. arabinogalactan. 41:29-36.
malolactic systems. 41:215-18.
purification. 41:295-300.
Epicuticular wax on grape berries. 40:241-4.
Ester(s). composition of white wines from high acid must. 44:371-7.
nitrogen fertilization influence on concentrations in Riesling wine. 44:275-84.
Ethanol. acetic acid bacteria effect on concentration in wine. 40:99-105.
effect on mitochondrial injury. 43:129-33.
Ethanolamine determination in wine. 43:315-17.
Ethylene. effect on early bunch stem necrosis on. 42:290-4.
effects on Riesling vines. 41:330-41.
Ethyl carbamate. citrulline reaction with ethanol at low to normal temperatures. 44:309-12.
fertilization and extended lees contact effects on formation. 41:269-72.
in fortified wines. 43:318-22; 359-43.
precursors in grape juice. 41:189-92; 43:18-22.
urea. reaction with ethanol at low to normal temperatures. 44:309-12.
reduction. 44:350-4.
Ethyl maltol effects of juice quality. 44:320-6.
Eukaryote. effects on yeast diversity. 42:141-4.
stem heat balance measure. 43:159-65.
Eutrophication. 42:237-44.
F
False potassium. 41:77-83.
Fanleaf virus. 43:36-40; 200-5.
in wine. 42:268-73.
degradation during second fermentation of Champagne. 40:175-82.
Fermentation. alcoholic. biogenic amine formation. 41:160-7.
kinehtic factors affecting. 44:127-33, 134-8.
lees and insoluble materials effect on rate. 44:86-92.
simultaneous deacidification. 44:371-7.
climatic conditions effects on yeast diversity. 42:141-4.
commercial. urea formation in wine. 41:68-73.
effect on aroma components of grape berries. 40:183-8.
histamine formation. 41:160-7.
hydrogen sulfide production during. 44:211-16.
killer yeast effect on. 42:295-300.
kinehtics. 41:319-24.
lipid content evolution during second fermentation of Saccharomyces cerevisiae. 40:175-82.
malolactic. See also Malolactic fermentation.
biogenic amines formation. 41:160-7.
effect on ethyl carbamate formation in wine. 40:106-8.
lactic acid bacteria comparisons for energy yielding (ATP)
malolactic enzymes systems. 41:215-18.
Leuconostoco geus growth. 40:277-82.
must clarification effects on yeast. 42:133-6.
N-carbamyl amino acids identification. 44:49-55.
phospholipid and sterol contents relationships to yeasts and fermentation activity. 42:301-8.
Phosphatase membranes. growth and survival during. 43:329-32.
rate. kinetics under anisothermal conditions. 44:127-33, 134-8.
secondary. of low alcohol sparkling apple wine. 44:93-8.
simultaneous yeast/bacterial. 41:57-67.
sluggish. See Sluggish fermentation.
sugar transport inhibition effect on production rate. 44:56-64.
temperature evolution influence on rate. 44:127-33.
tryptophan formation. 41:160-7.
without sulfur dioxide. 41:313-18.
Fertilization. nitrogen. ethyl carbamate formation in wines effects on.
influence on monoterpenes, higher alcohol, and ester concentrations in Riesling wines. 44:275-84.
long term effects on Chenin blanc wines. 40:85-90.
pistle nutrient concentration. effects on. 44:378-86.
sold-applied. 40:16-20.
vegetative growth. 44:378-86.
yield components. effects on. 44:378-86.
phosphorus. long-term effects on Chenin blanc wines. 40:85-90.
potassium. long-term effects on Chenin blanc wines. 40:85-90.
Thompson Seedless wines. 40:16-20.
Ferulic acid. metabolism by wine lactic acid bacteria. 44:76-80.
Filtration. effects on sparkling wine foam behavior. 44:387-92.
pad. effect on wine quality and browning. 42:347-53.
Fining. dye-binding assay of soluble protein. 40:189-93.
Fino sherry. amino acid content. 41:12-15.
Flavor. Gewürztraminer berries. 40:149-54.
metoxypyrazines. 42:103-8, 109-12.
Missouri Seyval blanc. 41:116-20.
odor-active compounds. 43:90-2.
precursor analysis. 44:359-70.
phenolic acid and aldehyde components of white oak. 43:333-8.
wine. See also Wine. Sensory. Aroma. specific wine.
bitter almond taste. 41:295-300.
distillates. 40:31-5.
Seyval blanc. 41:116-20.
ultrafiltration effects on. 42:91-6.
Flow injection analysis. beverage. 43:93-100.
enzymatic detection of lactic and malic acids in wine. 43:58-62.
of metallic cations in wine. 44:284-8.
total acidity in wines. 44:118-20.
Flowing. Vitis vinifera response to seasonal water deficits. 40:52-60.
Fluorometric determination of biacetyl in wines. 42:73-5.
wine filtration effect on behavior. 44:387-92.
Free radicals, lignin conversion to aromatic aldehydes. 40:31-5.
Freeze-drying. grapes. for sample extraction. 42:237-44.
Freeze. injury, differential thermal analysis. 43:355-61.
SUBJECT INDEX — 501
weed control to control minimum temperatures. 44:431-4.
weed control influence on minimum temperatures. 44:431-4.
Fruit. See also Berry.
browning. 44:8-12.
composition. light exposure effects on Gewürztraminer. 40:149-54,
summer browning effects on de Chaunac. 40:109-20, 299-308.
set, responses to seasonal water deficits. 40:52-60.
Fumigation. methyl bromide. 44:8-12.
methyl iodide. 44:8-12.
sulfur dioxide. of table grapes. 43:266-74.
Vorlex efficacy in suppressing crown gall. 44:241-8.
Fungicide(s). powdery mildew treatment. 43:53-7.
Fumigation, methyl bromide. 44:8-12.
Fumigation, methyl iodide. 44:8-12.
sulfur dioxide, of table grapes. 43:266-74.
Vorlex efficacy in suppressing crown gall. 44:241-8.
Fungicide(s). powdery mildew treatment. 43:53-7.
residues on berries. 44:205-10.
Fusel alcohols formation during fermentation. 44:17-21.

G
Gallinlated procyanidins. 44:168-72.
Gas chromatography. See Chromatography.
Generalized Procrustes analysis. red port wines. 44:27-34.
Genetic factors relating to grape composition and wine quality. 44:409-30.
Genetic factors relating to grape composition and wine quality. 44:409-30.
Gewürztraminer grapevines, canopy microclimate. 40:121-9, 149-54.

Glycerol, production by grape molds. 42:58-62.
Glycolic acid. production by Botrytis and effect on biological aging of Fino.
type and level influence on malate metabolism of Schiz. pombe cells. 44:113-17.
transport inhibition as limiting factor of fermentation. 44:56-64.
Glycerol, production by grape molds. 42:58-62.
Glycoconjugates. 41:277-83.
Glycolic acid precursors. 44:359-70.
Golden muscat wine. 44:198-204.
Gondola sampling for Botrytis cinerea. 44:261-5.
Grape(s). See also Berry and Grapevine.
antochyano-3-glucosides. 43:244-8.
antochyanins. in Vitis rotundifolia. 40:253-8.
- apple blends. 44:320-6.
- aroma components. alcoholic fermentation effects on. 40:183-8.
cuticle and wax accumulation. 40:241-4.
cold storage. 44:230-2.
composition. 44:409-30.
leaf and cluster shading effects on. 41:193-200.
long-term fertilization effects on. 40:91-8.
egestion. 42:237-44.
fungicide residues. 44:205-10.
juice. See Juice.

methoxy pyrazines in. 42:103-8, 109-12.
phenolics, concentration during ripening. 40:43-6.
identification. 41:87-9, 204-6.
resveratrol production during different developmental stages. 42:41-6.
storage. 42:237-44.
benzyl alcohol use for Botrytis cinerea inhibition. 41:265-8.
methyl bromide fumigation. 44:8-12.
sulfur dioxide fumigation during. 41:131-6.
table. See Table grapes.
tissue extract analysis. 41:223-8.
variety tissue analysis. 41:223-8.
waterberry. 41:301-5.
Grapevine(s). See also specific cultivar.
Alpha zones. 44:409-30.
Anxia. 44:313-19.
antochyanin-3-glucosides in berry skins. 43:244-8.
Beta zones. 44:409-30.
hardness. 43:355-61.
necrosis and fruitfulness. 41:168-75.
sulfur dioxide fumigation during. 41:131-6.
tissue response to low temperature exotherm. 41:251-60.
C-resistant isolates. 41:306-12.
purification. 44:1-7.
cane tissue responses to low temperature exotherm. 41:251-60.
canopy management. 44:409-30.
effect on fruit and wine sensory qualities. 41:74-6, 193-200.
effect on powdery mildew. 43:53-7.
effect on root development and distribution. 43:71-8.
evaporative potential in fruit zone. 41:137-41.
fruit zone leaf removal. 43:139-48; 44:409-30.
Sauvignon blanc vines. 41:74-6.
shading effects on bud necrosis and fruitfulness. 41:168-75.
shoot positioning. 44:409-30.
thinning. 44:409-30.

subject_index
Hexose uptake in *Saccharomyces cerevisiae* and *Saccharomyces bayanus*. 40:9-15.

High performance liquid chromatography. See Chromatography.

Higher alcohols. formation during fermentation. 44:17-21, 211-16.

in white wines from high acid musts. 44:371-7.

nitrogen fertilization influence on concentrations in Riesling wine. 44:275-84.

formation during winemaking. 41:160-7.

Homothallism. 43:283-9.

Hot water treatment for crown gall. 41:325-9; 44:153-8.

HPLC. See Chromatography.

Hulls, yeast. See Yeast hulls.

Hybrid vines, anthocyanin analysis. 40:283-91.

Hydrogen cyanamide effects on budbreak. 40:47-51.

Hydrogen sulfide production during fermentation. 44:17-21, 211-16.

enzyme. 42:167-74.

succrose. 43:381-3.

Hydrophobic proteins contribution to foam in Champagne base wine. 44:297-301.

tartarates. 40:43-6.

Hydroxycinnamoyl-tartaric acid esters in grape skins. 44:13-16.

Ice nucleation. evaluation of Frostgard. 44:232-5.

Identification. of arabinogalactan in red wine. 41:29-36.

of catechin-gallates in white grapes. 41:87-9.

of ellagic acid. 41:43-7.

of odor-active compounds. 43:90-2.

of phenolics, in red grapes. 41:223-8.

in white grapes. 41:87-9.

of grape, in must. 41:156-9.

yloromaceae. 41:223-8.

of calcium tartrate crystallization. 44:65-75.

of flavonoid and phenolic compound in white grapes. 43:180-90.

of malolactic bacteria during vinification. 41:48-56.

of malolactic bacteria during vinification. 41:48-56.

of phenolic compound in white grapes. 41:87-9.

of potassium titration and decanolic acid production during vinification. 41:48-56.

of malolactic bacteria during vinification. 41:48-56.

In vivo protein synthesis. 44:445-51.

Ion chromatography. See Chromatography.

Irrigation. 42:227-32.

ISEM. See Immunosorbent electron microscopy.

Isoelectric focusing. varietal must and wine differentiation. 44:255-60.

Isolation. of phenolic compounds in red grapes. 41:204-6.

Isotope rations to determine the contribution of tin-lead capsules to the lead content of wine. 43:180-90.

Isozyme data on rootstock SO4. 43:261-5.

profiles of Norton and Cynthiana cultivars. 44:41-4.

Italia grapes. leaf area effect on fruit development and quality. 40:130-4.

J

Juice, grape. adenine utilization by yeast during fermentation. 43:18-22.

browning. 44:320-6.

carbonation effects on quality. 44:320-6.

colorimetric determination of urea in. 40:143-4.

efficiency of. 41:43-7.

ekly carbamate precursors in. 41:269-72.

ekly maltol effects on quality. 44:320-6.

muscadin. 41:43-7.

nitrogen supplementation effects on amino acids and urea. 43:1-10, 11-17.

Pichia membranaefaciens. growth and survival during fermentation. 43:329-32.

tartaric, malic, and citric acids determination in. 42:1-5.

treatment effects on yeast during fermentation. 42:133-6.

ultrafiltration.. 40:272-6.

urea formation during fermentation. 43:18-21.

K

K1 killer toxin gene. 41:37-42.

K1/K2 double killer strains. 41:37-42.

Karyotypes of wine yeasts. 44:139-42.

of rootstock. 44:148-52.

Latent virus/rootstock interactions. 44:76-80.

Kloeckera apiculata for wine haze reduction. 41:147-55.

Kluyveromyces thermodurans. yeast strains growth during fermentation of musts inoculated with. 41:156-9.

Lactate. effect on pH and titratable acidity. 40:81-4.

plantarum. 41:43-7.

fermentum, 43:329-32.

acid urease inhibition. 40:245-52.

plantarum. 44:76-80.

Leaf, grapevine. analysis of fertilization effects. 40:31-8.

subject index — 505

area. effect on early bunch stem necrosis. 42:290-4.
 influence on fruit development and quality. 40:130-4.

**C-assimilates. 41:306-12; 44:1-7.
 fatty acid from lipid fractions. 44:180-6.
 initiation rate. 40:259-64.
 putrescine accumulation. 41:121-5; 43:239-43.
 removal. effects on composition, fruit rot, and yield. 43:139-48;
 44:409-30.
 effects on wine sensory qualities. 41:74-6; 44:409-30.
 for control of Botrytis bunch rot. 42:233-6.
 for control of powdery mildew. 43:53-7.
 shading effects on Cabernet Sauvignon fruit and wine sensory
 properties. 41:193-200.
 tissue analysis. 41:77-83, 121-5.
 water potential. 42:118-22.

 light. exposure effect on monoterpene levels of Gewerztraminer. 40:149-

Limousin oak. 43:23-30.
 lignin. oxidation of in aging wine distillates. 40:31-5.

Living mulches for frost control. 44:431-4.
 lipid(s). content of Champagne wine during second fermentation of
 Saccharomyces cerevisiae. 40:175-82.
 fractions of grape leaves and tissues. 44:180-6.
 living mulches for frost control. 44:431-4.
 low alcohol sparkling apple wine. 44:93-8.
 low temperature exotherm. responses of bud and cane tissues of Vitis
 vinifera. 41:251-60.
 LTE. See Low temperature exotherm.
 LTI. See Latitude temperature index.

M

Macrolelements. in grapevines. 42:245-51.
 in xylem exudate. 40:155-60; 43:275-82.

Madeira wines. ethyl carbamate behavior during production. 43:339-43.
 degradation. 44:113-17.
 effect on pH and titratable acidity. 40:81-4.
 inhibition by sulfhydryl reagents and oxalic acids in grape berries.
 malic acid. analysis. 40:316-19; 42:1-5.

distribution in grape berries. 43:323-8.
 to modify urease activity in wine. 42:79-80.
 Malic enzyme. 43:153-8, 323-8.
 Malolactic bacteria. growth during vinification. 41:48-56.
 Malolactic fermentation. 42:63-6, 219-26; 44:76-80.
 biogenic amine formation during. 41:160-7.
 Cabernet Sauvignon wines. 41:57-67.
 color and phenolic changes. 41:57-67.
 decanoic acid production. 41:48-56.
 effect on ethyl carbamate formation in wine. 40:106-8.
 energy-yielding (ATP) enzyme systems. 41:215-18.
 Leuconostoc oenos. evaluation of combination with wine yeast.
 43:253-60.
 growth under anaerobic conditions. 40:277-82.
 Nisin effects on. 41:1-8, 7-11.

Malvidin. in grape skins. 43:244-8.
 mannotol. detection of biochemical characteristics of wine lactic acid bacte-
 Marechal Foch wine. carbonic maceration. 40:170-4.
 maturation. grape berry. effect on soluble protein characteristics of juice
 and wine. 40:199-207.
 phenolic compounds in ripening white grapes. 40:43-6.

Mechanical harvesting. See also Harvesting.
 of Chardonnay. 41:176-81.

Mechanical pruning. See also Harvesting.
 of muscadine. 41:273-6.

Media. single broth culture for tests of heterofermentation, mannitol, and

Mercury salts. 43:153-8.
 pruning effects on cold hardiness and water content during deaccli-
 mation of cane and bud tissue. 41:251-60.

Metabolism, anaerobic in grape. 40:161-9.
 Metallic cations in wine. 43:284-8.
 Methionine metabolism relationship to n-propanol production. 44:17-21.
 Methyloxyprazines in Sauvignon blanc grapes and wine. 42:103-8, 109-12.
 Methyl bromide fumigation of Thompson Seedless. 44:8-12.
 Methyl iodide fumigation of Thompson Seedless. 44:8-12.
 Microbial antagonism. 42:295-300.
 Microclimate, grapevine. See also Canopy management.
 effect on monoterpane levels of Gewürztraminer. 40:149-54.
 evaporative potential in the fruit zone. 41:137-41; 44:409-30.
 leaf and cluster shading of Cabernet Sauvignon. 41:193-200.
 shading effects on bud necrosis and fruitfulness. 41:169-75.
 summer hedging effects on. 40:109-20, 299-308.
 Microelements in grapevines. 42:245-51.
 in xylem exudate. 40:155-60; 43:275-82.
 Microvinification. color and phenolic changes in Cabernet Sauvignon wine.
 41:57-67.
 genomic integration of yeast K1 killer toxin into wine yeasts. 41:37-
 42.

 nitrogen distribution and translocation. 40:16-20, 85-90, 91-
 8; 41:241-50.
 Thompson Seedless vines. 41:77-84, 121-5.

Mitochondria. injury. 43:129-33.

 in Chardonnay juice. 44:359-70.
in Golden Muscat wine. 44:198-204.
nitrogen fertilization influence on concentrations in Riesling wine.
44:275-84.
mtDNA restriction profiles. 43:83-6.
Multistage bioreactor for continuous wine fermentation. 40:292-8.
Muscadine grapevines. pigment characteristics. 40:253-8.
pruning effects on yield and quality. 41:273-6.
Muscat à petite grains blanc grapevines. clonal and pruning effects on yield
and terpene concentration. 43:149-52.
Must, grape. acidification of sherry. 44:400-4.
carbonic maceration effect on Maréchal Foch. 40:170-4.
clarification effects on yeast during fermentation. 42:133-6; 44:452-8.
climatic condition effects on yeast diversity. 42:141-4.
concentration by reverse osmosis. 42:47-57.
corrected. anion content. 44:292-6.
sherry. acidification. 44:400-4.
sterol content. 44:452-8.
variety differentiation. 44:255-60.
N N-carbamoylputrescine. 43:239-43.
N-carbamoyl amino acids identification in wines and yeast cells. 44:49-55.
n-Propanol production during fermentation. 44:17-21.
Necrosis. shading effects on in Thompson Seedless. 41:168-75.
N-carbamyl amino acids identification in wines and yeast cells. 44:49-55.
Nerisoprenoids in Chardonnay juice. 44:359-70.
N,N-dimethyl-N′-o-phenylenediamine as herbaceous receptor host for closteroviruses
from leafroll-affected grapevines. 41:201-3.
Nocitiana benthamiana as herbaceous receptor host for closteroviruses
in leaf tissue of Thompson Seedless. 41:77-83.
Nisin. 41:1-6, 7-11.
Nitrogen. accumulation in Cabernet franc vines. 44:81-5.
assay of juice content to predict sluggish fermentation. 42:47-57.
distribution and translocation in grapevines. 41:241-50; 42:180-90.
partitioning. 42:113-17,118-22,180-90.
in leaf tissue of Thompson Seedless. 41:77-83.
Nematode-resistant rootstock. 41:126-30.
barrel aging. See Barrel aging.
content of phenolic acid and aldehyde in flavor components. 43:333-8.
heating effects on wine sensory characteristics. 43:23-30.
origin effects on wine sensory characteristics. 43:23-30, 333-8.
oxidation effects on wine distillates during aging. 40:31-5.
seasoning effects on wine sensory characteristics. 43:23-30.
white. 43:333-8.
Odor-active compounds in Pinot noir wines. 43:90-2.
Oloroso sherry amino acid content. 41:12-15.
determination in grape juice and wine. 42:1-5.
recovery from grapes for HPLC determination. 42:237-44.
Oxalate. 43:153-8.
Oxidation. ascorbic acid effects on post-disgorgement oxidative stability of
sparkling wine. 44:227-31.
effects on flavor. 40:31-5.
effects on phenolic composition of Grenache and Chardonnay
wines. 40:36-42.
hydroxybenzoic acids by grapevine peroxidases. 43:134-8.
must. 40:36-42; 41:346-9; 44:393-9.
non-enzymic. 40:31-5.
xericotic. 43:134-8.
caffeic acid reactions. 41:84-6.
Champagne pressing. 44:393-9.
reduction by chemical additives. 42:255-60.
ultrafiltration effects on. 42:347-53.
Oxidative phosphorylation. 43:129-33.
Oxygen. consumption during Champagne pressing. 44:393-9.
effect on acetic acid bacteria growth. 40:99-105.
P P
Packaging, table grape. influence on post-harvest quality. 43:79-82.
Paclitaxel use on Gewürztraminer vines. 40:121-9.
Partitioning, bottling effects on. 44:393-9.
Partitioning. 42:113-17,118-22,180-90.
p-coumaric acid. metabolism by wine lactic acid bacteria.. 44:76-80.
Pectin content of maturing Cabernet Sauvignon berries. 41:111-15.
Pediococcus. Identification and characterization of from Washington state
wines. 43:233-8.
sensitivity to Nisin. 41:1-6, 7-11.
Penicillin. in grape skins. 43:244-8.
Pesticides. dimethyl anthranilate as bird repellent. 40:140-2.
Pectin nutrient concentration. 44:378-86.
Petiolaris. in grape skins. 43:244-8.
Petitesirah. DNA fingerprinting. 44:266-74.
Petunidin. in grape skins. 43:244-8.
malate effect on. 40:81-4.
Phenol(s). See also Polyphenols.
-carboxylic acids metabolism by wine lactic acid bacteria. 44:76-80.
interference in soluble protein estimation in white wines. 40:189-93.
Phenolic(s). acids and aldehydes. in brandies. 41:342-5.
in white oak. 43:333-8.
in white wine. 40:168-72.
anerobic metabolism effects on in berry skins. 44:13-16.
behavior during must oxidation. 41:346-8.
carbonic maceration effects on. 40:170-4.
changes in Cabernet Sauvignon wines made by simultaneous yeast/
bacterial fermentation and pomace contact. 41:57-67.
Chardonnay wines. 40:36-42.
Grenache wines. 40:36-42.
hydroxyethidium effect on. 40:36-42.
identification in red grapes. 41:204-6.
in white grapes. 41:87-9.
phytoalexin. trans-resveratrol. 43:49-52.
polymeric phenols in wines. 42:309-16.
Pichia membranaefaciens, 43:49-52.
Phylloxera. host suitability. 43:249-52.
Phytoalexins in grape berries at different developmental stages. 42:41-6.
Pigment. 43:90-2.
Pomace contact, effects on color and phenolics in Cabernet Sauvignon Port wine. color evaluation. 44:27-34.
Potassium. bitartrate, inhibitors in wine. 41:16-20.
Powdery mildew. 43:57-67.
Polyphenol(s). See also Phenols, Polymeric phenols.
effects on color and quality of white wines. 42:128-32.
in grape tissue extracts. 41:223-8.
in wine distillates. 40:31-5.
isoquercitrin. 43:249-52.
Isoflavones. 43:249-52.
Isoleucine. 44:239-43.
Isobutyl carbamate, in fortified wines. 43:318-22.
\(n \)-Propyl carbamate, in fortified wines. 43:318-22.
Proteases, yeast acid. effectiveness in wine haze reduction. 41:147-55.
Protein(s). assay for white wine. 40:189-93
contribution to foam formation in sparkling wines. 42:97-102;
44:297-301.
elementary composition of musts. 42:259-64.
resistance to fungal infection. 41:124-7.
Resveratrol. concentration in wine. 43:49-52.
Resveratrol. 43:325-9.
Ripe acetic acid production. grape must lees and insoluble solids effects on.
44:142-6.
Quality, wine. See Wine.
Radioisotope studies on conversion of \(^{32} \)SO\(_4\) in table grapes. 43:266-74.
Raisins. physical and chemical characteristics. 42:76-8.
Rectified concentrated musts. 44:292-6.
Red wine. See Wine.
Reserve nitrogen, grapevine. See Nitrogen.
Restriction fragment length polymorphism analysis (RFLP) of wine grape cultivars. 44:266-74.
Resveratrol. concentration in wine. 43:49-52.
production by grape berries. 42:41-6.
Reverse osmosis. must concentration. 42:19-25.
leafroll effect on growth, yield, and fruit maturity indices. 43:367-9.
shoot tipping and ethephon treatment. 41:330-41.
must contamination by reverse osmosis. 42:375-9.
must contamination by reverse osmosis. 42:375-9.
Resveratrol. 43:325-9.
Reverse osmosis. must concentration. 42:19-25.
leafroll effect on growth, yield, and fruit maturity indices. 43:367-9.
shoot tipping and ethephon treatment. 41:330-41.
Riesling wine. C\(_{13}\) norisoprenoid compounds in. 41:277-83.
must contamination by reverse osmosis. 42:375-9.
must contamination by reverse osmosis. 42:375-9.
Ripening, grape. berry pectin content changes during. 41:111-15.
delay, gibberellin treatment. 41:142-6.
phenolic compounds in white grapes. 40:43-6.
shading effects on Cabernet Sauvignon. 41:193-200.
Spectroscopy. enzymatic detection of L-lactic and L-malic acids in wine. 43:58-62.

Spermidine. in leaf tissue of Thompson Seedless vines. 41:121-5.
Spermine. in leaf tissue of Thompson Seedless vines. 41:121-5.

Spring-applied nitrogen. 41:241-50.

Stable killer yeast phenotype. 41:37-42.

Sulfite(s). effects on white wine color and quality. 42:128-32.

Sugar(s). extraction from grapes for HPLC determination. 42:237-44.

Suwannee grapevines, xylem exudate composition. 40:155-60.

Sustainable agriculture. 43:294-5, 296-8.

Tartaric acid. analysis. 40:316-19.

Tartaric acid, concentration and compartmentation in ethyl carbamate Teleki 5C rootstock. 43:261-5.

Temperature. See also Acclimation, Cold hardiness. budbreak and leaf appearance requirements. 40:21-6.

fermentation. alcoholic. 44:127-33.

wine storage. 44:309-12.

Terpene(s). concentration, clonal and pruning effects on in Muscat à petite grains blanc berries. 43:149-52.

in Gewürztraminer berries. 40:149-54.

free volatile. in Golden Muscat. 44:198-204.

potential volatile. in Golden Muscat. 44:198-204.

Terpenols. carbonic anaerobiosis of berries effects on. 43:41-8.

Thermal analysis of deep supercooling of Vitis vinifera dormant bud and cane tissue. 41:251-60.

Third party inspection of harvested wine grapes for Botrytis cinerea. 44:261-5.

Thompson Seedless grapevines. berry drop. 41:142-6.

bud fruitfulness. 40:27-30; 41:168-75.

bud necrosis. 41:168-75.

gibberelin treatments. 41:142-6.

internal branching. 44:8-12.

leaf tissue analysis. 41:77-83, 121-5.

potassium deficiency. 41:77-83, 121-5.

potassium fertilization. 42:227-32.

ripening. 41:142-6.

waterberry. 41:301-5.

Titratable acidity. lactate effect on. 40:81-4.

malate effect on. 40:81-4.

Torulaspora delbrueckii. influence on volatile composition of wines fermented without sulfur dioxide. 41:313-18.

phospholipid and sterol contents in. 42:301-8.

Total acidity determination in wines. 44:118-20.

Transpiration measurement in vines. 43:159-65.

Training system. grapevine. See Canopy management.

Trellising. See also Canopy management.

for increased evaporative potential in the fruit zone. 41:137-41.

leaf and cluster shading effects on Cabernet Sauvignon fruit and wine sensory qualities. 41:193-200.

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN). 41:277-83.

Toxin production by killer yeast during fermentation. 42:295-300.

adenine as a possible precursor. 43:18-22.

formation. in grape juice. 41:189-92; 42:317-21.

in fortified wines. 43:318-22.

in wine. 41:68-73; 41:208-19.

nitrogen fertilization effects on formation in wines. 40:219-20.

nitrogen supplementation of juice effect on release. 43:11-17.

reduction by acid urease. 41:350-4.

from Lactobacillus fermentation. 40:245-52.

Vapor distillation. 42:73-5.

Variability of alcoholic fermentation kinetics. 41:319-24.

Variatel differentiation of must and wine by protein fraction. 44:255-60.

Veraison. wine water stress and peduncle girdling effects on berry growth.
and deformability. 44:193-7.
Venus juice. effects of carbonation and ethyl maltol on quality. 44:320-6.
spacing. 44:409-30.
mowing. 44:431-4.
nematode resistance. 41:126-30.
organics. 43:294-5.
practices affecting grape composition and wine quality. 44:409-30.
replant. 41:126-30.
Vinification. decanoic acid production during. 41:48-56.
Virus. See also specific virus.
Viroids, grapevine. Davis virus collection. 43:200-5.
Vitispiranes. precursors in Riesling wine. 41:277-83.
Vitamin effects on growth and fermentation rate of wine yeasts. 40:208-13.
Vitis labrusca.
Vitis aestivalis.
Vitis rotundifolia.
Vitis vinifera.
Volatile(s). carbonic anaerobiosis effects on. 43:41-8.
carbonic maceration. 40:170-4.
thiourea effects on yeast growth and deformability. 44:193-7.
Vosges oak. 43:23-30.
See also Oak.
W
Water. content of bud and cane tissue. 41:251-60.
effects on early bunch stem necrosis on. 42:290-4.
flow measurement in vines by stem heat balance method. 43:159-65.
potential. Vitis vinifera responses to seasonal deficit. 40:52-60.
stress. effects on berry growth and deformability. 44:193-7.
Waterberry. 41:301-5.
Wax accumulation on grape berries. 40:241-4.
fruit zone leaf removal effect on yield, composition, and fruit rot. 43:139-48.
nitrogen fertilization. 44:378-86.
White Riesling juice. soluble protein characteristics. 40:199-207.
White Riesling wine. grape maturity effect on soluble protein. 40:199-207.
ultrafiltration. 41:207-14; 42:91-6.
White wine. See Wine.
Wine(s). See also specific wine.
aging. See Aging.
aluminum content and sources. 43:166-70.
amino acid. content of sherries. 41:12-15.
N-carbamyl identification. 44:49-55.
profiles of commercial juice and wine. 42:261-7.
tannin interactions. 43:83-70.
apellation of origin. 44:302-8.
apple. low alcohol sparkling. 44:93-8.
apricot. 41:229-31.
aroma. See also Sensory
leaf removal effects on. 41:74-6.
Missouri Seyval blanc sensory and chemical analyses. 41:116-20.
autioxidative reaction of caffeic acid in. 41:84-6.
benzyl alcohol oxidase isolation and characterization. 41:295-300.
bicarboxylic acid determination. 41:289-94.
Champagne. aging. 41:21-8.
foam. 42:97-102; 44:297-301.
lipid content. 40:175-82.
must oxidation during pressing. 44:393-9.
chaptalization. 42:19-25.
citric acid determination in. 42:1-5.
climatic conditions effects on yeast diversity. 42:141-4.
color. See also Color.
changes during simultaneous yeast/bacterial fermentation and pomace contact. 41:57-67.
Missouri Seyval blanc. 41:116-20.
Sheffé design. 41:232-40.
ultrafiltration effects on. 40:272-6; 41:182-5.
dimethylsulfide and dimethylsulfoxide in wine. 44:327-32.

fibers. 44:371-7.
influence on volatile composition of wines fermented without sulfur
dioxide. 41:313-18.
juice treatment effects on. 42:133-6.
K1/K2 double killer strains. 41:37-42.
killer. effect on wine fermentation. 42:295-300.
Kluyveromyces thermotolerans. 41:156-9.
Lactobacillus brevis. 44:76-80.
Lactobacillus plantarum. 44:76-80.
Leuconostoc oenos. 40:277-82; 41:1-6, 7-11, 48-56, 156-9; 42:163-
6, 219-26, 274-7; 43:253-60, 44:76-80, 99-112.
See also Leuconostoc oenos.
must treatment effects on. 42:133-6.
n-carbamyl amino acids identification in cells. 44:49-55.
n-propanol production. 44:17-21.
Pediococcus. 43:233-8; 44:76-80.
Pichia membranaefaciens. growth and survival. 43:329-32.
population. viticultural and enological practices effects on. 44:405-8.
See also Saccharomyces bayanus.
Saccharomyces cerevisiae. 40:9-15, 175-82, 208-13, 233-40, 292-
8, 309-15; 41:156-9; 42:6-12, 301-8; 43:83-6, 206-9, 283-9, 370-
See also Saccharomyces cerevisiae.
See also Saccharomyces fermentati.
Saccharomyces oviformis. 44:93-8.
sorbic acid-resistant. 43:290-3.
sterol content of musts in the presence of growing cells. 44:452-6.
effect on hydrogen sulfide production during fermentation. 44:211-16.
influence on n-propanol production. 44:17-21.
sugar transport inhibition effect on production rate. 44:56-64.
survival factors. 40:61-4.
See also Torulaspora delbrueckii.
viable cells in wine. composition of white wines from high acid must. 44:371-7.
vitamin effects on growth and fermentation rate. 40:208-13.
viticultural practices effects on population. 44:405-8.
canopy manipulation. See Canopy management, Pruning.
Chardonnay vines. 43:139-48.
clonal and pruning effects on. 43:149-52.
de Chaunac vines. 40:299-308.
fruit zone leaf removal effects on. 43:139-48.
harvesting techniques effects on. 41:176-81.
Muscat à petite grains blanc vines. 43:149-52.
nitrogen fertilization effects on. 40:85-90; 44:378-86.
phosphorus fertilization effects on. 40:85-90.
potassium effects on. 40:85-90.
Riesling vines. 43:139-48.
shoot orientation influence on. 40:259-64.
summer hedging effects on. 40:109-20, 299-308.
water deficit, response to. 40:52-60.
White Riesling vines. 43:139-48; 44:378-86.
Zinfandel grapevines. DNA fingerprinting. 44:266-74.
leafroll effect on growth, yield, and fruit maturity indices. 43:367-9.