The American Journal of Enology and Viticulture publishes full-length research papers, review papers, Research Notes, and Technical Briefs on all subjects related to enology and viticulture.

The AJEV does not accept articles published in or submitted to other publications; however, Technical Briefs may contain material published elsewhere. Authorship of papers in the Journal is not limited to members of the American Society for Enology and Viticulture.

The AJEV does not pay authors for their manuscripts.

Publication Rights: The AJEV reserves first right of refusal to publish any paper or poster presented at the ASEV Annual Meetings. The Editor may release papers which may be more appropriate for another publication if requested in writing by the author(s). In such cases, Technical Briefs or abstracts may be requested.

Reviews: Each manuscript receives at least two reviews. Additional authorities are consulted as necessary to confirm the scientific merit of any part or all of the manuscript. The reviewers are asked to return their recommendations and comments within six weeks, though it sometimes takes longer. Suggestions and changes required by the referees will be forwarded to the corresponding author.

The Editor and Technical Editors are responsible for judging the suitability of each article for publication. The Editors reserve the right to edit manuscripts to make them conform with the adopted style and/or to return them to the authors for revision.

Corrections: Corrections will be published, if necessary, in the Number 4 issue of each Volume. Authors are requested to call to the attention of the Editor any significant errors in their published work.

Printing Charges: We do not charge ASEV members for the printing of manuscripts. Non-Members will be charged $40 per page. Additionally, the AJEV reserves the right to charge any author for the extra printing costs of unusual or improperly submitted materials and for extensive author alterations.

Reprints: Reprints may be ordered at the time the page proofs are sent to the authors. Order sheets, including the cost of reprints, will accompany the proofs.

In cases where the author has access to a more economical method of reproducing the published article, he may do so provided all AJEV citations and page numbers are visible.

Publication Release Policy: © All rights reserved. Written permission to include in other scientific publications reprints of and quotations from articles published in the journal may be granted by the Editor on the condition that full credit be given both the AJEV and the author(s) and that volume, number, page numbers, and year of publication be stated. Neither the AJEV nor the ASEV is responsible for statements or opinions printed in its publications; they represent the views of the authors or persons to whom they are credited and are not binding on the American Society for Enology and Viticulture as a whole.

General Information: All full-length manuscripts must be original research, neither simultaneously under consideration or submission nor previously published elsewhere.

Literature reviews are encouraged as being useful to the Society’s members. Reviews should be focused, attempting to synthesize the results and hypotheses within the research area under review. Reviews will be submitted to the most appropriate technical editors for peer review and evaluation. Like original manuscripts, Technical Briefs, and Research Notes, reviews may not be currently submitted elsewhere or be previously published.

Sequential papers submitted together will most often be returned to the authors to be revised either as a single work or as separate papers each of which can stand on its own. In certain cases, results of continued research submitted at a later date might be appropriately subtitled as “Part 2” under the same title.

Research Notes are classified as reports of new applications or interpretations of existing data; Technical Briefs are for the dissemination of information relevant to the interests of the members of the Society and may not necessarily be original research. Research Notes must neither be currently submitted nor previously published elsewhere. Technical Briefs may include previously published material.

All papers submitted must be written in English. Please be sure translations are as clear as possible to avoid misinterpretation of data.

FOUR copies of the manuscript and a 3.5" High-Density diskette should be submitted to:

The Editor
American Journal of Enology and Viticulture
P.O. Box 700
Lockeford, California 95237-0700, USA

You must send us your manuscript on a 3.5" High-Density diskette. We prefer that manuscripts be submitted in Microsoft Word 97 or WordPerfect 7. If Word or WordPerfect are not available to you, you may use .rtf (RICH TEXT FORMAT).
If you are submitting a MAC diskette, please use a high-density disk — this being essential for our conversion program.

All manuscripts mailed from outside the US should be sent by registered mail. The AJEV office hours are 9 a.m. to 5 p.m. Pacific time, Monday through Friday, and the telephone number is 209-727-3439; FAX 209-727-5004. Our E-mail address is Editor@ajev.com.

Please provide the telephone and telefax numbers and an e-mail address (if available) of the corresponding author.

Examples of Literature Citations

Journal article

Paper accepted for publication

Chapter

Thesis

Paper presented

Proceedings

Unpublished data
These references should not be included in Literature Cited, but should be cited in brackets in the text showing name, source of data, and year. [V. L. Singleton, unpublished data, 1984][L. P. Christensen, personal communication, 1985].

Preparation of manuscript: Manuscripts should be typewritten or computer printed double-spaced on line-numbered 8½ × 11 inch (21.5 × 28 cm) paper with pages and lines numbered. FOUR copies must be submitted to the Editor. Authors whose primary language is not English should have manuscripts proofread by English-speaking peers before submitting. Tables should be on numbered pages following the Literature Cited section, followed by the legends for figures on a separate numbered page. Two sets of camera-ready figures and four copies should be included (see sections on figures and tables).

Organization of manuscript: A manuscript should conform to the general form of presentation that follows:

Title: The title (in upper and lower case) should reflect the important aspects of the article as concisely as possible, preferably in no more than 100 characters and spaces. Do not use both common and scientific names in the title.

BY-LINE (all caps): List author(s) name(s) centered beneath the title. Authors’ professional titles and current addresses, where the research was conducted, acknowledgments, and submission date should be given in separate paragraphs below the by-line.

Abstract: A one-paragraph abstract stating briefly the objectives and results obtained must be included.

Introduction: Include the general problem involved, reasons for investigation, and prior work.

Materials and Methods: Be sure to describe in adequate detail procedures that have not been fully described in cited publications. Specify conditions or variables whose control influences the experimental results (e.g., for sensory evaluation, use of colored lights or glasses).

Results and Discussion: This section should fully describe results and discuss possible applications.

Conclusions: Summarize the most important results and salient points.

Literature Cited: Citations must be arranged alphabetically by author(s) at the end of the article. Citations must be referenced by number in brackets in the text.

Citations of journal articles should be in the following order: senior author’s name followed by initials, all other authors, initials preceding last names up to three authors (if there are more than three authors, list the first two followed by et al.), title of paper with only the first word capitalized (proper nouns excepted), journal title, volume, issue number (when required), pages, and year in parentheses. Titles of publications should be properly abbreviated. (See examples.)

Citations of books should also include the authors’ names, title of book (first letters capitalized), number of pages or pages cited) edition, publisher, place of publication, and year of publication.

Unpublished data, personal communications,
Figures: When submitting figures, glossy prints should be clear and of high quality. Be certain that all symbols and abbreviations conform to those used by the AJEV. Prints with poor alignments, out-of-focus letters and symbols, and blurred lines are not acceptable. Prints, with the exception of composites, should not be mounted on cardboard.

A 1:1 reproduction is best to maintain maximum detail in printing; however, larger figures are acceptable if they are suitable for reduction without loss of detail. Exact sizes for same-size reproductions are 3½ inches (9 cm) wide for one column and 7.25 inches (18.5 cm) wide for two columns; maximum height is 9.5 inches (24.5 cm) including legend. On photographs, graphs, and line drawings for same-size reproduction, numbers and lettering (upper and lower case) should be in 10-point type (1/8 inch ca). Computer-generated graphs and figures are acceptable if they conform to requirements of line sharpness and boldness and of type size.

If possible, include figures (except photographs) on the disk that have been exported using (in order of preference) .WMF, .CGM, .AI, or .EPS file extensions and note the file name and extension (Fig1.EPS; Fig2.AI) on the disk label.

Cite all figures in numeric order in the manuscript. Legends (to avoid confusion, they are to appear on the same page with the figure on the hard copies) should describe the contents so that each illustration is understandable when considered apart from the text. Each should be labeled with the figure number and author’s name on the back. Additionally, please be sure to include the legends on the disk file.

Photographs submitted should be high-quality glossy prints cropped at right angles to show only essential details. Insert a scale bar when necessary to indicate magnification.

When creating composites, match photographs for subject content, background density, and similarity of contrast. Do not combine line drawings and photographs in a composite figure. Photographs in a composite should be mounted on hard cardboard, with the edges in contact; space between photographs will be inserted in printing. Submit two original composite figures or plates for publication and two prints of equivalent quality for review purposes. Black and white illustrations are preferred, but color illustrations may be considered by the Editor. A cost quotation will be provided, and the author or an institutional officer must indicate acceptance of responsibility for the quoted rate in writing before processing of that illustration will be started.

Submit two originals and four copies of each line drawing or glossy print. Frame graphs and affix index marks to ordinates and abscissae. Avoid too bold lettering, numbers, and lines for coordinate axes and curves.

If line drawings or graphs are to be published as a composite figure, the parts of the composite should be mounted on cardboard in the appropriate positions when the manuscript is submitted.

Tables: Submit tables that are self-explanatory and include enough information so that each table is intelligible without reference to the text or other tables. The title should summarize the information presented in the table without repeating the subheadings. Be sure that the layout of the table presents the data clearly. Subheadings should be brief. Non-standard abbreviations should be explained in footnotes. Footnotes are designated with superscript lower case letters or other appropriate symbols. Ditto marks should never be used.

When only a few values are to be presented, this should be done in the text rather than in a table. Data that are presented in tables should not be repeated in figures.

Cite tables in numeric order in the manuscript. Information presented in a table should agree with that in the text.

Trade Names: The names of manufacturers or suppliers of special materials should be given (including city, state, and zip code). Trade names must be capitalized and followed by ® or ™. In experimentation, a chemical compound should be identified by its common name (if such name exists) or by the chemical name and structural formula.

Nomenclature: The binomial or trinomial (in italics) and the authority must be shown for plant, insects, and pathogens when first used in the abstract and in the text. Following citation in Materials and Methods, the generic name may be abbreviated to the initial, except when confusion could arise by reference to other genera with the same initial. A collection number or that of a comparable listing should identify algae and microorganisms referred to in the manuscript.

For varietal names, the AJEV conforms to the spellings listed in the BATF publication Working List of US Wine Grape Varieties.

Numerals: Spell out all numbers or fractions that begin a sentence. Do not use a hyphen to replace the preposition “to” between numerals (13 to 22 min, 3°C to 10°C) within the text; however, hyphens may be used in tables, figures, graphs, and in parentheses.

Write out numerals one through nine, except with units of measure. Write out and hyphenate simple fractions (e.g., two-thirds), with the same exceptions applying as for the use of hyphens. It is usually desirable to use
decimals instead of fractions.

Time and dates: When reporting time, use the 24 hour time system with four digits; the first two for hours and the last two for minutes (e.g., 0400 h for 4:00 a.m., 1630 h for 4:30 p.m.). Dates are reported as day of month, month, and then year (19 April 1985).

Units: *Wine volumes* should be reported as liters (L) or milliliters (mL). Hectoliters are not recommended.

Grape weights should be reported as grams (g), kilograms (kg), and metric tons (t).

Temperature should be reported as degrees Celsius only.

Parts per million (ppm) and parts per billion (ppb) are not recommended. The equivalent milligrams per L (mg/L) and micrograms per liter (µg/L) are preferred.

Wine or juice yield should be reported as liters per 1000 kg (L/1000 kg) or milliliters per kilogram (mL/kg) (equivalent).

Land area should be expressed as hectares.

Statistical methods: Authors must report enough details of their experimental design so that the results can be judged for validity and so that previous experiments may serve as a basis for the design of future experiments.

Multiple comparison procedures such as Duncan’s multiple range test are frequently misused. Such misuse may result in incorrect scientific conclusions. Multiple range tests should be used only when the treatment structure is not well understood (e.g., studies to compare cultivars). When treatments have a logical structure, significant differences among treatments should be shown using t- or F-tests.

Usually field experiments, such as studies on crop yield and yield components, that are sensitive to environmental interactions and in which the crop environment is not rigidly controlled or monitored, should be repeated (over time and/or space) to demonstrate that similar results can (or cannot) be obtained in another environmental regime. Replicate chemical or sensory evaluations should be done to show reproducibility and consistencey, respectively.

Abbreviations and symbols: Replacement of certain unwieldy chemical names by abbreviations may occur as a convenience, though only well-known abbreviations should be used (e.g., ATP, DNA). Standard chemical symbols may be used without definition (Ca, NaOH). If the article uses several abbreviated forms, define them all in a single paragraph where the first abbreviation is used.

With the exception of those standard for international usage (e.g., HPLC, ATP), do not use abbreviations in the title or abstract. The metric system is standard, and SI units should be used (other units may be placed in parenthesis after the SI).

Please note that liter is abbreviated in the AJEV by a capital L, not lower case, to avoid confusion with the number 1 in the typefaces used in the journal. Symbols and abbreviations on figures and tables must also conform.

AJEV Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation or Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetoxyl</td>
<td>AcO</td>
</tr>
<tr>
<td>acetyl</td>
<td>Ac</td>
</tr>
<tr>
<td>active ingredient</td>
<td>a.i.</td>
</tr>
<tr>
<td>Adenosine 5’ diphosphate (adenosine diphosphate)</td>
<td>ADP</td>
</tr>
<tr>
<td>Adenosine 5’ monophosphate (adenosine monophosphate)</td>
<td>AMP</td>
</tr>
<tr>
<td>Adenosine 5’ triphosphate (adenosine triphosphate)</td>
<td>ATP</td>
</tr>
<tr>
<td>alternating current</td>
<td>AC</td>
</tr>
<tr>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>and others (italic)</td>
<td>et al.</td>
</tr>
<tr>
<td>ante meridiem</td>
<td>a.m.</td>
</tr>
<tr>
<td>atmosphere (see also standard atmosphere)</td>
<td>Atm</td>
</tr>
<tr>
<td>average (abbreviate in tables and equations only)</td>
<td>av.</td>
</tr>
<tr>
<td>°Balling (°Brix preferred)</td>
<td>°B</td>
</tr>
<tr>
<td>boiling point</td>
<td>bp</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>btu</td>
</tr>
<tr>
<td>°Brix</td>
<td>°Brix</td>
</tr>
<tr>
<td>calorie (gram calorie; see also kilocalorie)</td>
<td>cal</td>
</tr>
<tr>
<td>°Celsius</td>
<td>°C</td>
</tr>
<tr>
<td>centigrade</td>
<td>°C</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
</tr>
<tr>
<td>centimeter-gram-second</td>
<td>cgs</td>
</tr>
<tr>
<td>chemically pure</td>
<td>CP</td>
</tr>
<tr>
<td>coefficient</td>
<td>coeff.</td>
</tr>
<tr>
<td>coenzyme A</td>
<td>CoA</td>
</tr>
<tr>
<td>colony forming units</td>
<td>cfu</td>
</tr>
<tr>
<td>concentrate</td>
<td>conc.</td>
</tr>
<tr>
<td>concentration</td>
<td>concn.</td>
</tr>
<tr>
<td>constant</td>
<td>const.</td>
</tr>
<tr>
<td>cosecant</td>
<td>csc</td>
</tr>
<tr>
<td>cosine</td>
<td>cos</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation or Symbol</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>cotangent</td>
<td>cot</td>
</tr>
<tr>
<td>counts per second</td>
<td>counts/sec</td>
</tr>
<tr>
<td>cubic centimeter</td>
<td>cm^{3}</td>
</tr>
<tr>
<td>cultivar (only after specific epithet)</td>
<td>cv.</td>
</tr>
<tr>
<td>decibel</td>
<td>dB</td>
</tr>
<tr>
<td>degree (angular)</td>
<td>o</td>
</tr>
<tr>
<td>degree Celcius</td>
<td>o C</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>o F</td>
</tr>
<tr>
<td>deoxyribonucleic acid (deoxyribonucleate)</td>
<td>DNA</td>
</tr>
<tr>
<td>dextro (preceding chemical name)</td>
<td>(small cap) D</td>
</tr>
<tr>
<td>dextrorotatory (preceding chemical name)</td>
<td>(italic) d (+)</td>
</tr>
<tr>
<td>diameter</td>
<td>d</td>
</tr>
<tr>
<td>direct current</td>
<td>DC</td>
</tr>
<tr>
<td>dissociation constant, negative logarithm of</td>
<td>pK</td>
</tr>
<tr>
<td>effective dose, 50%</td>
<td>ED_{50}</td>
</tr>
<tr>
<td>electromotive force</td>
<td>emf</td>
</tr>
<tr>
<td>electron volt</td>
<td>eV</td>
</tr>
<tr>
<td>equivalent</td>
<td>equiv.</td>
</tr>
<tr>
<td>exponential</td>
<td>exp</td>
</tr>
<tr>
<td>figure (abbreviate only in parenthesis, tables and legends)</td>
<td>Fig.</td>
</tr>
<tr>
<td>foot</td>
<td>ft</td>
</tr>
<tr>
<td>foot-candle</td>
<td>ft-c</td>
</tr>
<tr>
<td>foot-pound</td>
<td>ft-lb</td>
</tr>
<tr>
<td>for example</td>
<td>(italic) e.g.</td>
</tr>
<tr>
<td>freezing point</td>
<td>fp</td>
</tr>
<tr>
<td>frequency modulation</td>
<td>FM</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
</tr>
<tr>
<td>gravity (gravitation constant)</td>
<td>(italic) g</td>
</tr>
<tr>
<td>hectare</td>
<td>ha</td>
</tr>
<tr>
<td>hecto- (× 10^{6})</td>
<td>h</td>
</tr>
<tr>
<td>hectoliter</td>
<td>hL</td>
</tr>
<tr>
<td>hertz</td>
<td>hz</td>
</tr>
<tr>
<td>high performance liquid chromatography</td>
<td>HPLC</td>
</tr>
<tr>
<td>horsepower</td>
<td>hp</td>
</tr>
<tr>
<td>hour</td>
<td>hr</td>
</tr>
<tr>
<td>hydrogen ion concentration, negative logarithm of</td>
<td>pH</td>
</tr>
<tr>
<td>hyperbolic cosecant</td>
<td>csch</td>
</tr>
<tr>
<td>hyperbolic cosine</td>
<td>cosh</td>
</tr>
<tr>
<td>hyperbolic cotangent</td>
<td>coth</td>
</tr>
<tr>
<td>hyperbolic sine</td>
<td>sinh</td>
</tr>
<tr>
<td>inch</td>
<td>in</td>
</tr>
<tr>
<td>infrared</td>
<td>IR</td>
</tr>
<tr>
<td>inhibitor constant</td>
<td>K_{i}</td>
</tr>
<tr>
<td>inside diameter</td>
<td>i.d.</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>kelvin</td>
<td>° K</td>
</tr>
<tr>
<td>kilocalorie</td>
<td>kcal</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>kilometer</td>
<td>km</td>
</tr>
<tr>
<td>kilowatt</td>
<td>kW</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation or Symbol</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>ounce (avoirdupois)</td>
<td>oz</td>
</tr>
<tr>
<td>outside diameter</td>
<td>o.d.</td>
</tr>
<tr>
<td>page</td>
<td>p</td>
</tr>
<tr>
<td>pages</td>
<td>pp</td>
</tr>
<tr>
<td>para- (preceding chemical name)</td>
<td>(italic) p</td>
</tr>
<tr>
<td>parts per billion</td>
<td>ppb</td>
</tr>
<tr>
<td>parts per million</td>
<td>ppm</td>
</tr>
<tr>
<td>when applicable, use</td>
<td>mg/L or µL/L<sup>-1</sup></td>
</tr>
<tr>
<td>pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>percent</td>
<td>%</td>
</tr>
<tr>
<td>per</td>
<td>/</td>
</tr>
<tr>
<td>peta- (5 x 10<sup>15</sup>)</td>
<td>P</td>
</tr>
<tr>
<td>pico- (x 10<sup>-12</sup>)</td>
<td>p</td>
</tr>
<tr>
<td>post meridiem</td>
<td>p.m.</td>
</tr>
<tr>
<td>pound (avoirdupois)</td>
<td>lb</td>
</tr>
<tr>
<td>pounds per square inch</td>
<td>lb/in<sup>2</sup></td>
</tr>
<tr>
<td>probability</td>
<td>(italic) p</td>
</tr>
<tr>
<td>racemic (optical configuration, a mixture of dextro- and levo-) (preceding chemical name)</td>
<td>(small caps) DL</td>
</tr>
<tr>
<td>rate change of a process with 10° increase</td>
<td>Q<sub>10</sub></td>
</tr>
<tr>
<td>retardation factor (distance unknown factor has traveled relative to a solvent front in chromatography)</td>
<td>R<sub>i</sub></td>
</tr>
<tr>
<td>revolutions per minute</td>
<td>rpm</td>
</tr>
<tr>
<td>ribonucleic acid</td>
<td>RNA</td>
</tr>
<tr>
<td>roentgen equivalent man</td>
<td>rem</td>
</tr>
<tr>
<td>second (angular)</td>
<td>"</td>
</tr>
<tr>
<td>second (time)</td>
<td>sec</td>
</tr>
<tr>
<td>secondary (preceding chemical name; s subscript (e.g., BA<sub>s</sub>)</td>
<td>(italic) sec-</td>
</tr>
<tr>
<td>significant at 5% level</td>
<td>*</td>
</tr>
<tr>
<td>significant at 1% level</td>
<td>**</td>
</tr>
<tr>
<td>sine</td>
<td>sin</td>
</tr>
<tr>
<td>species (only after generic name)</td>
<td>sp., spp.</td>
</tr>
<tr>
<td>species nova (only after specific epithet)</td>
<td>sp. nov.</td>
</tr>
<tr>
<td>specific gravity</td>
<td>sp gr</td>
</tr>
<tr>
<td>specific heat</td>
<td>sp ht</td>
</tr>
<tr>
<td>specific volume</td>
<td>sp vol</td>
</tr>
<tr>
<td>square</td>
<td>sq</td>
</tr>
<tr>
<td>standard atmosphere</td>
<td>atm</td>
</tr>
<tr>
<td>standard deviation</td>
<td>SD</td>
</tr>
<tr>
<td>standard error</td>
<td>SE</td>
</tr>
<tr>
<td>standard temperature and pressure</td>
<td>STP</td>
</tr>
<tr>
<td>substrate constant</td>
<td>(italic) K<sub>2</sub></td>
</tr>
<tr>
<td>surface tension</td>
<td>N/m</td>
</tr>
<tr>
<td>tangent</td>
<td>tan</td>
</tr>
<tr>
<td>ultraviolet</td>
<td>UV</td>
</tr>
<tr>
<td>varietas (variety; only after specific epithet) that is</td>
<td>(italic) var.</td>
</tr>
<tr>
<td>versus</td>
<td>(italic) vs.</td>
</tr>
<tr>
<td>volt</td>
<td>V</td>
</tr>
<tr>
<td>volume</td>
<td>vol</td>
</tr>
<tr>
<td>volume ration (volume per volume)</td>
<td>v/v</td>
</tr>
<tr>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>week</td>
<td>wk</td>
</tr>
<tr>
<td>weight</td>
<td>wt</td>
</tr>
<tr>
<td>weight per volume</td>
<td>w/v</td>
</tr>
<tr>
<td>weight ratio (weight per weight)</td>
<td>w/w</td>
</tr>
</tbody>
</table>

If special fonts are not available to you, please indicate italic by single underline, small caps by double underline, caps by triple underline, and bold face by wavy underline.

Volume 45, 46, 47, 48, 49

Author Index

A

Adan, M. L. See M. R. Salinas. 47:134-144.

Aghajani, N. See S. Guidoni. 48:438-442.

Amarante, N. See S. Guidoni. 48:438-442.

Amaro..., M. C. Polo. Preliminary studies on peptides in wine by HFLC. 45:167-172.

Arosemena, O. See R. Credi. 48:7-12.

Arévalo, G. See M. Castellari. 49:91-94.

Ariizumi, K., Y. Suzuki, I. Kato, Y. Yagi, K. Otsuka, and M. Sato. Winemaking from Koshu variety by the sur lie method: Change in the content of nitrogen compounds. 45:312-318.

Ayestaran, B. See C. Ancín. 47:313-322.

B

Babini, R. See R. Credi. 48:7-12.

Bakker, J. See S. O. Barco. 47:363-368.

Barnes, J. A. See J. Bakker. 47:37-41.

Barrios, M.-L. See E. Soufleros. 49:266-274.

Baumes, R. See E. Soufleio. 49:266-278.

Baumes, R. See E. Souflero. 49:266-274.

Baynove, C. See N. Abbott. 46:239-244.

Baynove, C. See N. Abbott. 46:239-244.
components of red wines on the microbial synthesis of volatile phenols. 48:443-448.

Climent, M.D. See P. Aragon. 49:5-9.

Cuenat, Ph. See R. Pezet. 47:287-290.

Cuisset, C. See P. This. 48:492-501.

See B. Girard. 48:198-206.

Clinglefield, P. R. See B. A. Uhlig. 49:375-382.

Collin, A. See A. Deloire. 46:571-578.

Cologrande, O. See V. Mazzoleni. 45:401-406.

Comtat, M. See M. Gilis. 47:11-16.

See B. Girard. 48:198-206.

Clinglefield, P. R. See B. A. Uhlig. 49:375-382.

Collin, A. See A. Deloire. 46:571-578.

Cologrande, O. See V. Mazzoleni. 45:401-406.

Comtat, M. See M. Gilis. 47:11-16.

See B. Girard. 48:198-206.

Clinglefield, P. R. See B. A. Uhlig. 49:375-382.

Collin, A. See A. Deloire. 46:571-578.

Cologrande, O. See V. Mazzoleni. 45:401-406.

Comtat, M. See M. Gilis. 47:11-16.

See B. Girard. 48:198-206.

Clinglefield, P. R. See B. A. Uhlig. 49:375-382.

Collin, A. See A. Deloire. 46:571-578.

Cologrande, O. See V. Mazzoleni. 45:401-406.

Comtat, M. See M. Gilis. 47:11-16.

See B. Girard. 48:198-206.
Dobó, A. See G. Vas. 49:100-104.

DORING, H. Photosynthesis of ungrafted and grafted grapevines: Effects of rootstock genotype and plant age. 45:297-299.

Durif, H. See M. Gilis. 47:11-16.

Duteurtre, B. See L. Viaux. 45:407-409.

E

See C. Ginestar. 49:413-420, 421-428.

Eastridge, J. S. See C. A. Sims. 46:155-158.

See R. M. Cook. 49:225-228.

Farineau, J. See C. Glad. 45:327-332.

Farkas, M. See G. Vas. 49:100-104.

Ferrandino, A. See S. Guidoni. 48:438-442.

Ferreira, M. A. See F. Carvalho. 46:63-66.

See L. Moio. 49:325-332.

See M. Guilloux-Benatier. 46:486-492.

See D. P. Miller. 47:244-250, 251-256, 380-388.

Formisny, H. Vaillant, F. Lantreibecq, and J. Bourgois. Development of ... trans-8-methyl-octa lactone extracted from French oak wood (Quercus robur L., Quercus petraea Liebl.) under model cask conditions. 48:509-515.

See M. Guilloux-Benatier. 46:486-492.

Fosli, U., and A. C. Noble. The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. 45:6-10.

Fish, K. H. See D. C. Pericival. 45:123-132, 133-140.

See D. P. Miller. 47:244-250, 251-256, 380-388.

Fournier, N. See E. Guichard. 46:419-423.
Francis, I. L., M. A. Selton, and P. J. Williams. The sensory effects of pre- or post-fermentation thermal processing on Chardonnay and Semillon wines. 45:243-251.
Fruchier, A. See M. Hnamouchi. 47:186-192.

G
Garcia-Aslonso, A. See N. Martin-Carron. 48:328-332.
García de la Serrana, H. L. See R. Gimenez Martinez. 47:441-446.
Gerbaux, V., A. Villa, C. Monamy, and A. Bertrand. Use of lysozyme to inhibit malolactic fermentation and to stabilize wine after malolactic fermentation. 49:49-54.
Gimenez Martinez, R., H. L. García de la Serrana, M. Villalon Mire, J. Quesada Granados, and M. C. Lopez Martinez. Influence of wood heat treatment, temperature, and maceration time on vanillin, syringaldehyde, and gallic acid contents in oak wood and wines spirit mixtures. 47:441-446.
Gimonnet, G. See A. Deloire. 46:571-578.
See L. Bertolini. 47:343-345.
See S. Rainieri. 49:319-325.
See E. Ng, A. Karumanchiri, E. P. Diamandis, and G. J. Soleas. Resveratrol glucosides are important components of commercial wines. 47:415-420.
Goñi, I. See N. Martin-Carron. 48:328-332.
See C. Ancin. 47:313-322.
See C. Ginestar. 49:413-420, 421-428.
Gu, S., P. B. Lombard, and S. F. Price. Effect of shading and nitrogen source on growth, tissue ammonium and nitrate status, and inflores-

Heatherbell, D.A. See H. Dawes. 45:319-326.

Hajrasuliha, S, D. E. Rolston, and D. T. Louie. Fate of lSN fertilizer

Guitart, A., P. Hernández Orte, and J. Cacho. Effect of different

Guilloux-Benatier, M., J. Guerreau, and M. Feuillat. Influence of initial

Gubler, W.D. See K.J.Dell. 49:11-16.

Gu, S., P. B. Lombard, and S. F. Price. Inflorescence necrosis induced
from ammonium incubation and deterred by ß-keto-glutarate and
ammonium assimilation in Pinot noir grapevines. 45:155-160.

Guber, W. D. See K. J. Dell. 49:11-16.

Guedes de Pinho, P., and A. Bertrand. Analytical determination of
furaneol (2,5-Dimethyl-4-hydroxy-3(2H)-furanone). Application to
differentiation of white wines from hybrid and various Vitis vinifera
cultivars. 46:181-186.

See A. Ancilbar Beloqui. 48:84-87.

Torriani. Effects of pH, temperature, ethanol, and malate concen-
tration on Lactobacillus plantarum and Leuconostoc cens. Modeling
of the malolactic activity. 46:368-374.

Guichard, E., N. Fournier, G. Masson, and J.-L. Puech. Stereoisomers of
ß-methyl-ß-ocatlangone. I. Quantification in brandies as a function of
wood origin and treatment of the barrels. 46:419-423.

See F. Feuillat. 48:509-515.

Guidoni, S., F. Mannini, A. Ferrandino, N. Argamante, and R. Di
Stefano. The effect of grapevine leafroll and rugose wood sanita-
tion on agronomic performance and berry and leaf phenolic content

Guilloux-Benatier, M., J. Guerreau, and M. Feuillat. Influence of initial
colloid content on yeast macromolecule production and on the
metabolism of wine microorganisms. 46:486-492.

Guitart, A., P. Hernández Orte, and J. Cacho. Effect of different
clarification treatments on the amino acid content of Chardonnay
musts and wines. 49:389-396.

Ibeas, J. I., I. Lozano, F. Perdigones, and J. Jimenez. Dynamics of flor
yeast populations during the biological aging of sherry wines. 46:75-
79.

Hénich-Kling, T., and Y. H. Park. Considerations for the use of yeast
and bacterial starter cultures: SO2 and timing of inoculation. 45:464-
469.

See D. J. Cox. 46:319-323.

See B. Martineau. 46:385-388, 442-448.

Hernández, P. See S. Mínguez. 49:177-182.

Hernández Orte, P., A. Guiralt, and J. Cacho. Amino acid determination
in musts and wines by HPLC after derivatization with phenylisothiocyanate. 48:229-235.

See A. Guiralt. 49:389-396.

Herald, B. P., Pfeiffer, and F. Radler. Determination of the three isomers
of 2,3-butanediol formed by yeasts or lactic acid bacteria during
fermentation. 46:134-137.

Herraz, T., and C. S. Ough. Separation and characterization of 1,2,3,4-
tetrahydro-ß-carbonile-3-carboxylic acids by HPLC and GC-MS.

Hidalgo Arellano, I. See V. Cheynier. 48:225-228.

Hirschfeld, D. J. See L. P. Christensen. 45:141-149, 377-387.

See N. K. Dokiczi. 46:429-436.

Hmamouchi, M., N. Es-Safi, M. Lahrichi, A. Frucher, and E. M.
Essassi. Flavones and flavonols in leaves of some Moroccan Vitis
vinifera cultivars. 47:186-192.

Howell, G. S., M. C. Candolfi-Vasconcelos, and W. Koblet. Response
of Pinot noir grapevine growth, yield, and fruit composition to
defoliation the previous growing season. 45:188-191.

Huang, Y.-C., C. G. Edwards, J. C. Peterson, and K. M.
Haag. Relationship between sluggish fermentations and the an-
tagonism of yeast by lactic acid bacteria. 47:1-10.

Hubáleková, M. Dependence of grapevine bud cold hardness on fluctu-
tations in winter temperatures. 47:100-102.

Huerta, M. D. See M. R. Salinas. 47:134-144.

Ibeas, J. I., I. Lozano, F. Perdigones, and J. Jimenez. Dynamics of flor
yeast populations during the biological aging of sherry wines. 46:75-
79.

Ibache, A. See A. Belanic. 48:181-186.

Ibeas, J. I., I. Lozano, F. Perdigones, and J. Jimenez. Dynamics of flor
yeast populations during the biological aging of sherry wines. 46:75-
79.

See I. Lozano, F. Perdigones, and J. Jimenez. Effects of
ethanol and temperature on the biological aging of sherry wines. 48:71-74.

Ilard, P. See C. Ginestar. 49:413-420, 421-428.

See S. Poni. 45:278-284.

J

K

See J. A. Wolpert. 45:393-400; 46:437-441.

Keene, J. See H. Dawes. 45:319-326.

Interactions of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. 49:341-349.

Kimura, P. H., G. Okamoto, and K. Hirano. Effects of gibberellic acid and streptomycin on pollen germination and ovule and seed development in Muscat Bailey A. 47:152-156.

See R. Krueger. 46:37-42.

See L. Morano. 45:345-348.

See G. S. Howell. 45:188-191.

Kopp, T. G. See B. Girard. 48:198-206.

Köteleky, K. See G. Vas. 49:100-104.

See K. J. Dell. 49:11-16.

L

Lahriri, M. S. See M. Himamouchi. 47:186-192.

See J. Marco. 45:192-200.

See S. Poni. 45:252-258.

See J. J. Marois. 45:300-304.

Lamison, C. D. See J. J. Marois. 45:300-304.

Lantrebeq, F. See P. Formisy. 48:345-351.

Lao, E. See I. Segarra. 46:564-570.

Leavitt, G. M. See L. P. Christensen. 45:141-149.

Lehtonen, P. Determination of amines and amino acids in wine — A review. 47:127-133.

See M. Tuiskunen. 48:220-224

Lin, J., and M. A. Walker. Index to hereidentifying grape rootstocks with simple sequence repeat (SSR) DNA markers. 49:403-407.

Little, D. See C. Sauzier. 48:383-386.

See I. Segarra. 48:564-570.

Lozano, I. See J. I. Ibeas. 48:71-74, 75-79.

Luz Silva, M., and F. X. Malcata. Relationships between storage conditions of grape pomace and volatile composition of spirits obtained therefrom. 49:56-64.

Main, G. L., and J. R. Morris. Color of Seyval blanc juice and wine as affected by juice fining and bentonite fining during fermentation. 45:417-422.

Malcata, F. X. See M. Luz Silva. 49:56-64.

Mangia, A. See V. Mazzoleni. 45:401-406.

Manginot, C. See C. Dubois. 47:363-368.

Mannini, F. See S. Guidoni. 48:438-442.

Mantilla, J. L. G. See M. C. Martinez. 46:195-203.

Marchal, R., V. Seguin, and A. Maujean. Quantification of interferences in the direct measurement of proteins in wines from the Champagne region using the Bradford method. 48:303-305.

Martineau, B., and T. Henick-Kling. Formation and degradation of diacetyl in wine during alcoholic fermentation with Saccharomyces cerevisiae strain EC1118 and malolactic fermentation with Leuconostoc oenos strain MCW. 46:442-448.

Mas, A. See M. Constanti. 48:339-344.

Massolini, M., P. Caldentey, and A. Silva. Phenolic compounds in cork used for production of wine stoppers as affected by storage and boiling of cork slabs. 49:6-10.

See E. Guichard. 46:419-423.

Matthews, M. A. See R. S. Grant. 47:217-224, 403-409.
Maujean, A. See R. Marchal. 48:303-309.
See S. Palacios. 48:525-526.
See Y. Vasserot. 48:433-437.
Moutounet, M. See V. Cheynier. 48:225-228.
Muller, C. A. See T. S. Collins. 48:243-249.
Muller, C. J. See T. M. Toland. 47:111-112.
Murano, L., and W. M. Kliwer. Root distribution of three grapevine rootstocks grafted to Cabernet Sauvignon grown on a very gravelly clay soil in Oakville, California. 45:345-348.
Mouratoglou, A. See R. Marchal. 48:303-309.
Moutouzet, M. See V. Cheynier. 48:225-228.
See A. Vernhet. 47:25-30.
Navarro, G. See M. R. Salinas. 47:134-144.
Ndung’u, C. K., G. Okamoto, and K. Hirano. Use of water stress in forcing Kyoho grapevines to produce two crops per year. 47:157-162.
Nagel, C. W. See S. E. Spayd. 46:49-55.
Namolosanu, I. See O. A. Antoce. 48:413-422.
Navarro, G. See M. R. Salinas. 47:134-144.
Ndung’u, C. K., G. Okamoto, and K. Hirano. Use of water stress in forcing Kyoho grapevines to produce two crops per year. 47:157-162.
Namolosanu, I. See O. A. Antoce. 48:413-422.
Nault, I., V. Gerbaux, J. P. Larpent, and Y. Vayssier. Influence of pre-culture conditions on the ability of Leuconostoc oenos to conduct malolactic fermentation in wine. 46:357-362.
Navarro, G. See M. R. Salinas. 47:134-144.
Ndung’u, C. K., G. Okamoto, and K. Hirano. Use of water stress in forcing Kyoho grapevines to produce two crops per year. 47:157-162.
Namolosanu, I. See O. A. Antoce. 48:413-422.
Nault, I., V. Gerbaux, J. P. Larpent, and Y. Vayssier. Influence of pre-culture conditions on the ability of Leuconostoc oenos to conduct malolactic fermentation in wine. 46:357-362.
Navarro, G. See M. R. Salinas. 47:134-144.
Ndung’u, C. K., G. Okamoto, and K. Hirano. Use of water stress in forcing Kyoho grapevines to produce two crops per year. 47:157-162.
Namolosanu, I. See O. A. Antoce. 48:413-422.
Nault, I., V. Gerbaux, J. P. Larpent, and Y. Vayssier. Influence of pre-culture conditions on the ability of Leuconostoc oenos to conduct malolactic fermentation in wine. 46:357-362.
Navarro, G. See M. R. Salinas. 47:134-144.
Ndung’u, C. K., G. Okamoto, and K. Hirano. Use of water stress in forcing Kyoho grapevines to produce two crops per year. 47:157-162.
O

See C. K. Nung'u. 47:157-162; 48:115-120.

See C. K. Nung'u. 47:157-162; 48:115-120.

See C. K. Nung’u. 47:157-162; 48:115-120.

———, M. A. Cliff. 47:301-308.

———, J. A. Larrauri. 47:369-372.

———, J. A. Larrauri. 47:369-372.
Schneider, V. Evaluation of small amounts of flavonoid phenols in white wines by colorimetric assays. 46:274-277.

Schütz, M., and J. Guarner. Lower fructose uptake capacity of genetically characterized strains of Saccharomyces bayanus compared to strains of Saccharomyces cerevisiae: A likely cause of reduced alcoholic fermentation activity. 46:175-180.

Scollary, G.R. See G. N. Chen. 45:305-311.

Souquet, J. M. See V. Cheynier. 48:225-228.

Smith, J.P. See J. J. Marois. 45:300-304.

Smith, J. P. See J. J. Marois. 45:300-304.

Sipiora, M. J., and M.-J. Gutierrez Granda. Effects of pre-veraison irrigation cutoff and skin contact time on the composition, color, and phenolic content of young Cabernet Sauvignon wines in Spain. 49:152-162.

Smith, J. P. See J. J. Marois. 45:300-304.

Smith, J. P. See J. J. Marois. 45:300-304.

Souquet, J. M. See V. Cheynier. 48:225-228.

Smith, J. P. See J. J. Marois. 45:300-304.

Smith, J. P. See J. J. Marois. 45:300-304.

See J. P. Pero. 47:49-56.

Tsang, E. See D. M. Goldberg. 49:23-34.

Turner, J. R. See S. Poni. 45:252-258.

UV

Vagnoli, P. See M. Kudo. 49:295-301.

Vaillant, H., J. See P. Formisyn. 48:345-351.

Vasseterot, Y. See S. Palacios. 48:525-526.

Vázquez Laza, B. See M. Itúnez Crespo. 45:460-463.

Vékey, K. See G. Vas. 49:100-104.

Vicente-Beckett, V. A. See G. N. Chen. 45:305-311.

Villa, A. See V. Gerbaux. 48:49-54.

Villalon Mire, M. See R. Gimenez Martinez. 47:441-446.

Vonah, T. M. See M. G. Chisholm. 45:201-212.

W

Subject Index

Abbreviations and symbols for AJEV manuscripts. 48:530-532.
Abscisic acid. contents in Kyoho vines in relation to budbreak induction by water stress. 48:115-120.
Acetaldehyde. -flavanol condensation products in red wine. 48:370-373.
Acetic acid. bacteria. barrel wood treatment. 48:516-520.
Acetic acid production. inhibition by lysozyme addition. 48:49-54.
stuck fermentation. 46:278-280.
Acetoin. formation by yeasts during fermentation. 46:134-137.
Acetic acid production. inhibition by lysozyme addition. 48:49-54.

Activation energy to form ethyl carbamate in wines. 45:17-24.

Aerobic metabolism of flor yeasts in sherry. 48:71-79.
Aging. controlled conditions. 45:277-281.
Agrobacterium vitis. see also Agrobacterium tumefaciens.
yeast/lactic acid bacteria effects on. 47:1-10.
Ammonium. grapevine tissue content. 47:173-180.
Amino acid(s). composition in grape juice from 12 Washington V. vinifera cultivars. 47:389-402.
h+3. 49:266-278.
Ampelometry. biometrical data from cultivars. 49:266-278.
Ampelegraph. biometric data from Vitis spp. leaves. 49:266-278.
Amperometric biosensors for assays of L-malic and D-lactic acids in wines. 47:11-16.

Analysis. See also specific analysis.
Alcohol(s). yeast growth inhibition. 48:413-422.
Alcoholic fermentation. See also Fermentation.
analysis of yeast populations during. 48:339-344.
colloid concentration influence on yeast macromolecule production. 46:486-492.
diacetyl formation and degradation. 46:442-448.
folpet degradation to phthalimide. 48:67-70.
fructose uptake capacity of yeasts effects on. 46:175-180.
karnetics. 47:363-368, 429-434.
lactic acid bacteria/yeasts effects on. 47:1-10.
must filtration effects on amino acid utilization. 47:313-322.

h+3. 49:266-278.
Ampelometry. biometrical data from Vitis spp. leaves. 49:266-278.
Amperometric biosensors for assays of L-malic and D-lactic acids in wines. 47:11-16.

Analysis. See also specific analysis.
amino acids. 47:127-133.
ethanol content in wine by capillary electrophoresis. 48:280-284.
fingerprinting of wine proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. 49:231-239.
furaneol determination for differentiation of white wines. 46:181-186.
glycerol content of wine. 47:193-198.
glycoproteins. 48:100-114.
headspace. to measure interactions between yeast walls and aroma substances. 45:29-33.
HPLC quantification of biogenic amines and amino acids in wine. 49:266-278.
isozyme. of Eutypa lata. 47:49-56.
potentiometric stripping determination of lead, cadmium, and zinc in wine. 45:305-311.
RAPD. of Agrobacterium biovars. 47:145-151.

DNA fingerprinting. 47:145-151.
electrolyte leakage. 45:145-149.
heat treatment effects on survival. 47:119-123.
polygalacturonase. 48:145-149.
Albariño wine. aroma. 47:206-216.
Alcohol(s). yeast growth inhibition. 48:413-422.
Alcoholic fermentation. See also Fermentation.
analysis of yeast populations during. 48:339-344.
colloid concentration influence on yeast macromolecule production. 46:486-492.
diacetyl formation and degradation. 46:442-448.
falpnet degradation to phthalimide. 48:67-70.
fructose uptake capacity of yeasts effects on. 46:175-180.
karnetics. 47:363-368, 429-434.
lactic acid bacteria/yeasts effects on. 47:1-10.
must filtration effects on amino acid utilization. 47:313-322.

h+3. 49:266-278.
Ampelometry. biometrical data from Vitis spp. leaves. 49:266-278.
Amperometric biosensors for assays of L-malic and D-lactic acids in wines. 47:11-16.

Analysis. See also specific analysis.
amino acids. 47:127-133.
ethanol content in wine by capillary electrophoresis. 48:280-284.
fingerprinting of wine proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. 49:231-239.
furaneol determination for differentiation of white wines. 46:181-186.
glycerol content of wine. 47:193-198.
glycoproteins. 48:100-114.
headspace. to measure interactions between yeast walls and aroma substances. 45:29-33.
HPLC quantification of biogenic amines and amino acids in wine. 49:266-278.
isozyme. of Eutypa lata. 47:49-56.
potentiometric stripping determination of lead, cadmium, and zinc in wine. 45:305-311.
RAPD. of Agrobacterium biovars. 47:145-151.

481
Astringency in wine. See also Sensory.

Assay. amperometric biosensors for L-malic and D-lactic acids in wines.

Ashing. to determine copper and iron in must. 45:25-28.

Aromatic composition of Muscat grapes. 48:181-186.

Antifungal agent. 46:159-165.

o-Arabinosidase activities of yeast strains. 45:291-296.

Anthocyanin(s). adsorption by yeast lees. 48:433-437.

Aromatic composition of sherry. 49:240-250.

Bitterness in wine. See also Sensory.

Bentonite. effect on color of Seyval blanc juice and wine. 45:417-422.

Berry, grape. See also Grape(s).

Bike, grape. See also Grape(s).

Birchwood. aging. See also Aging.

Bitterness in wine. See also Sensory.

Bitterness in wine. See also Sensory.
ethanol, catechin concentration, and pH effect on. 45:6-10.
time-intensity studies. 46:128-133.
Botrytis cinerea, canopy configuration effects on Seyval blanc. 48:482-
control of. leaf removal. 45:133-140.
Stylot-Oil. 49:11-16.
imunoassay quantification. 45:300-304.
sulfur dioxide fumigation for control. 48:121-124.
Bottle-fermented sparkling wine. yeast immobilized in double-layer gel
beads or strands. 48:471-481.
Bottle-fermented sparkling wine. yeast immobilized in double-layer gel
Bunch rot. See **Botrytis cinerea**.
calculation of. 49:74-78.
Bud, grapevine. See also Grapevine.
Brettanomyces/Dekkera
Bottle-fermented sparkling wine. yeast immobilized in double-layer gel

SUBJECT INDEX

cerevisiae cultivated on grape juice. 49:325-332.

Certified brand of origin. 47:410-414.

Chalcone synthase. 47:181-185.

Chambourcin grapevines. morphology and dry matter partitioning. 47:380-388.

Chambourcin wine. processing effects on phenolics and color. 47:279-286.

Champagne wine. protein measurement. 48:303-309.

Chenin blanc grapevines. phosphorus availability, scion and rootstock
charge properties of grape and wine polysaccharides and polyphenolic fractions. 48:254-259.

Chambourcin grapevines. carbohydrate seasonal changes. 47:380-386.

Chardonnay grapevines. carbohydrate seasonal changes. 47:31-36.

Chromatography, gas. acetate content of wine. 47:309-312.

Chromatography, thermal desorption-gas. 47:134-144.

Chromatography, thermal desorption-gas. 47:134-144.
Colorimetric assay. flavonoid phenols in white wine. 46:274-277.
parameters. for red wines. 46:353-356.
Compartmentation of malate dehydrogenase isoforms in grape berries.
forecasting production. 45:83-89.
gas exchange and water relations. 45:333-337.
leafhopper feeding impact on yield and juice quality. 48:291-302.
dry matter partitioning. 49:183-190.
Concord juice. leafhopper feeding impact on juice quality. 48:291-302.
Condensation products in red wine. 48:370-373.
Condensed tannins in grape pomace. 49:135-141.
Cooperage. lignin fractions. 49:49-55.
Copper. determination in must by wet and dry ashing. 45:25-28.
Cooperage. lignin fractions. 49:49-55.
Condensed tannins in grape pomace. 49:135-141.
biological control. 47:373-379.
Diaminopropane. in fruiting cuttings. 48:80-84, 85-92.
D-malic acid assay by amperometric biosensors. 47:49-56.
Diaminopropane. in fruiting cuttings. 48:80-84, 85-92.
Diabeticogenic fungicide residues in grapes, must, and wine. 45:338-340.
Dietary fiber. grape pomace potential as a food ingredient. 48:328-332;
49:135-141.
Differentiation. between wines of two close viticultural zones. 48:285-291.
of Penedés varietal musts. 46:283-291.
white wines. 46:529-541.
4-(Dimethylamino)-cinnamaldehyde. evaluation of flavonoid phenols in
white wine. 46:274-277.
Dimethylsulfide in wine. 45:341-344.
Dimethylsulfoxide in wine. 45:341-344.
Diode array detection. phenolic composition changes in Hungarian red
during oak aging. 46:67-74.
Disaccharides in wine. 45:229-234.
Discoloration in sherry wines. 46:138-142.
dimensional analysis. anthocyanins. flavonols. and color parameters. 46:295-298.
Disease. grapevine. See also specific disease.
heat treatment effects on survival. 47:119-123.
Botrytis cinerea. 46:1-4; 49:11-16.
heat treatment effects on survival of A. vitis. 47:119-123.
desséchement de la rafle. 46:579-580.
endophytic bacteria to control crown gall. 46:499-508.
Eutypa lata. 47:49-56.
fungal. relationship with reversional content of wines of different
ages. 46:1-4.
grapevine dieback. 49:49-56.
grey mold. 45:338-340.
inflorescence necrosis. 46:579-580.
nitrogen source effects on. 47:173-180.
shading effects on. 47:173-180.
leafroll. detection by ELISA and symptomatology. 47:239-243.
relationship to varietal factors and climate. 47:193-198.
phylloxera. host utilization. 47:373-379.
powdery mildew. potassium silicate for control. 47:421-428.
Stillett-Oil. 49:11-16.
Stellachmame. 46:579-580.
Uncinula necator. control with potassium silicate. 47:421-428.
cit- and trans-6-methyl-γ-octalactone aroma threshold. 46:292-294.
major volatile responses to processing. 49:56-94.
marc distillates. 49:56-94.
Diurnal arginine synthesis. 46:37-42.
D-lactic acid assay by amperometric biosensors 47:11-16.
DMS. See Dimethylsulfide.
DMSO. See Dimethylsulfoxide.
DNA. extraction. 45:102-106.
Methode Champenoise process effect on aroma. 49:289-294.
Methode Champenoise. process effect on aroma. 49:289-294.
of Pinot noir wine. 47:329-339.
of Spanish white wines. 46:5-9.
of table grapes. 43:301-308.
estorage temperature effects on Chardonnay. 48:310-316.
Dessert wines. alcoholic strength determination. 46:222-224.
Desséchement de la rafle. 46:579-580.
Diacetyl in wine. formation and degradation during fermentation. 46:442-448.
malolactic fermentation influence on concentration. 46:385-388,
442-448.
of Seyval grapevines. 46:469-477, 478-485.

Drying varieties. ripening characteristics. 49:375-382.

Economic. forecasting. 45:63-69.

Electrophoresis. ethanol analysis in wine. 48:280-284.

Equilibrium dialysis. to measure interactions between yeast walls and Enzyme(s). inhibitor. 48:1-6.

Enzymatic reactor for initiating malolactic fermentation. 48:345-351.

Environment. effects on wine color attributes. 45:43-48.

Enological traits of thermotolerant Energy production during malolactic fermentation. 46:319-323.

Ethylphenols. 46:392-398.

Ethyl anthranilate. 46:392-398.

Etheric. extract. 49:240-250.

Evaporation. from barrels during maturation of spirits. 46:98-115.

Factor analysis. for characterization and modelling of maturation of grapes. 48:317-322.

Fatty acids. in wine. 46:518-524.

Fermentation. alcoholic. acetic acid effects on. 46:278-280; 47:11-16.

free amino acid utilization. 47:313-322.

fructose uptake capacity of yeasts effects on. 46:175-180.

glucoamylase activities of yeasts. 45:291-296.

lactic acid bacteria/yeast effects on. 47:1-10.

must decandification with Schizosaccharomyces pombe. 49:408-412.

skin maceration effect on lipid composition of Saccharomyces cerevisiae. 49:119-124.

vacuum filtration of must. 47:313-322.

yeast populations. 48:339-344.

calcium tartrate precipitation. 46:509-513.

collodion concentration influence on yeast macromolecule production. 46:486-492.

comparison of oak barrels and plastic tank. 45:11-16.

diacetyl formation and degradation. 46:442-448.

enological traits of thermotolerant Saccharomyces cerevisiae. 49:319-324.

fining during. 45:417-422.

flavonoid and non-flavonoid compounds in must during and after. 45:255-261.

glycoconjugates. effects on. 48:397-402.

hydrogen sulfide production during. 45:107-112.

kinetics. 47:363-368.

malolactic. See also Malolactic fermentation.

amperometric biosensors for assays of L-malic and D-lactic acids. 47:11-16.

by a genetically engineered strain of S. cerevisiae. 48:193-197.

diacetyl formation and degradation. 46:442-448.

energy production. 46:319-323.

enzyme reactor to initiate. 48:345-351.

mannoprotein production in juice and must. 49:325-332.

pH and potassium effect on stuck fermentations. 49:295-301.

polysaccharide evolution. 45:108-110.

Port wine. 47:37-41.

potassium and pH concentration imbalance as a cause of stuck fermentations. 49:235-239.

resveratrol extraction from grape skins during fermentation. 47:287-290.

glucose concentrations. 48:214-219.

seed addition effects on phenolic composition of wine. 46:363-367.

skin fermentation time effects on anthocyanins, phenols, ellagic acid sediment, and sensory characteristics. 45:56-62.

sluggish. acetic acid effects on. 46:278-280.

lactic acid bacteria/yeast effects on. 47:1-10.

starter cultures. 46:357-362.

Styel-Oil effects on. 45:11-16.

sugar transport inhibition effect on production rate. 46:175-180.

sulfate reduction to hydrogen sulfide. 45:107-112.

temperature. influence on sensory characteristics of Pinot noir. 48:198-206.

thermal processing. sensory effects on Chardonnay and Semillon wines. 46:243-251.

thermotolerant Saccharomyces cerevisiae. 49:319-324.

yeast-assimilable nitrogenous compounds in juice. 49:125-134.

Fertilization. nitrogen. effect on inorganic nitrogen status, fruit composition, and yield. 45:377-387.

effect on yeast growth in Riesling juice. 46:49-55.

influence on must and wine composition. 45:34-42.

on trickle-irrigated vines. 49:191-198.

Filtration. effects on sparkling wine foam behavior. 45:407-409; 48:303-309.

vacuum. 47:313-322.

Fingerprinting wine proteins. 49:231-239.

Fining. effects on color of juice and wine. 45:417-422; 46:155-158.

effects on resveratrol concentrations. 48:214-219.

interference with direct protein measurement. 48:303-309.

phenol-peptide interaction. 46:319-338.

Fino sherry. 49:319-324.

virus presence effects on berry and leaf. 48:438-442.

Flavonoids. and non-flavonoid compounds in must. 46:255-261.

color correlation in Spanish red wine. 46:295-298.

cluster sun exposure effects on concentrations in Pinot noir

cluster thinning. 46:429-436.
grapes and wine. 46:187-194.
compounds in grape leaves. 47:186-192.
in red wines. 49:23-34.

Flavor, wine. See also Wine, Sensory, Aroma, specific wine.
astringency. 46:128-133.
diacyetyl. 46:385-388.
elohol concentration effects on temporal perception of viscosity
and density. 49:306-318.
fermentation temperature effects on. 48:198-206.
from wood during aging. 46:98-115.
malolactic fermentation effects on. 48:187-192.
precursors. 45:243-251.
sourness. 45:6-10; 46:128-133.
storage temperature effects on Chardonnay. 48:310-316.
sweetness. 46:128-133.
viscosity. 46:128-133.

Flavorants of aging wines and spirits. 46:98-115.

Folin-Ciocalteu reagent, evaluation of flavonoid phenols in white wine.
expression of different genes, response to anaerobiosis. 45:276-278.
Gibberellic acid. effects on pollen germination and ovule and seed
development. 47:152-156.
Girdling, effects on fruit set and vegetative growth. 49:359-366.
Glutamate dehydrogenase. 45:155-160.
Glutaric acid. effects on pollen germination and ovule and seed
development. 47:152-156.

Fungal disease. See also Grapevine, Disease.

Fumigation. sulfur dioxide, residue persistence. 48:121-124.
Furans. extraction from oak. 47:163-172.
Furaneol. determination for differentiation of white wines. 46:181-186.
Furans. extraction from oak. 47:163-172.

G

Gallic acid. influence of wood treatment, temperature, and maceration
time. 47:441-446.
resveratrol extraction from grape skins during fermentation. 47:287-
290.
Gas chromatography. See Chromatography.
Gene expression. RNA extraction at five stages of berry development.
46:315-318.

Genetics. complex hybrid combinations. 49:312-315.
diversity in Eutypa lata. 47:49-56.
molecular markers. 48:492-501.
RAPD markers. 48:492-501.

Gewürztraminer wine. protein instability. 45:319-326.
Gibberellic acid. effects on pollen germination and ovule and seed
development. 47:152-156.
Girdling, effects on fruit set and vegetative growth. 49:359-366.
Glucosidase(s). activities of yeast strains. 45:291-296.
Glucosides. storage temperature effects on. 48:310-316.

Glycosides. storage temperature effects on. 48:310-316.
Glycosides in grapes. fruit zone leaf thinning effect on. 49:35-43, 259-265.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Glycosides in grapes, fruit zone leaf thinning effect on. 49:35-43, 259-265.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.

Grape(s). See also Berry and Grapevine.
Glycosides in grapes, fruit zone leaf thinning effect on. 49:35-43, 259-265.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.

Grape(s). See also Berry and Grapevine.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.

Grape(s). See also Berry and Grapevine.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.

Grape(s). See also Berry and Grapevine.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.

Grape(s). See also Berry and Grapevine.
Glycoproteins in red wine. 45:410-416; 48:100-114.
Grape(s). See also Berry and Grapevine.
Grapevine(s). See also specific cultivar.

488—SUBJECT INDEX

329-339.
ed on yield and fruit composition. 45:181-187, 188-191;
midwinter pruning effects on bud cold hardiness. 45:388-
392.
morphology. 47:244-250; 49:183-190.
photosynthetic photon flux density (PPFD). 46:209-218,
219-226.
shade, artificial. effects on bud necrosis. 49:429-439.
shading effects on Pinot noir vine. 47:173-180.
shoot. number effects on development and morphology.
47:244-250.
sun exposure effects on quercetin. 46:187-194.
canopy microclimate. 45:123-132, 133-140; 46:116-127,
capacity. 47:244-250.
carbohydrate. accumulation. 46:306-314; 47:244-250,
251-256; 48:115-120.
seasonal changes in Chardonnay and Riesling. 47:31-36.
carbon partitioning. 49:183-190.
carboxylase. 45:297-304.
cell. cultures. RNA isolation. 47:181-185.
cellulose. distribution. 46:145-149.
Chambourcin. morphology and dry matter partitioning. 47:380-
388.
chemotaxonomy of leaves. 46:86-90.
chlorophyll. and nitrogen content. 45:278-284.
relationship to soil C content and VAM fungi. 48:93-99.
temperature effect on leaf. 46:375-379.
clones. 45:393-400; 47:124-126.
thinning. influence on fruit development. 46:429-436; 49:163-
170.
cold hardness. 45:388-392; 46:243-249; 47:31-36, 63-76, 100-
complex hybrid combinations. 49:302-305.
crop load. 45:252-258, 278-284; 46:429-436, 469-477, 478-485;
cuttings and in vitro propagation comparisons. 46:195-203.
denitrogenization. 49:191-198.
dieback. 47:49-56.
dioecy. 48:323-327.
disease. See Disease and specific disease.
diurnal arginine synthesis. 46:37-42.
DNA fingerprinting. rootstock identification. 49:403-407.
dormant buds. 46:243-249.
drought resistance. 45:297-304.
dry matter partitioning. 46:469-477, 478-485; 47:251-256,
360-398; 49:183-190.
dual culture with phylloxera and Vitis species. 45:187-159.
electrolyte leakage. 46:243-249; 48:145-149.
endogenous cryoprotectants. 47:31-36.
dosperm. 47:152-156.
factor analysis for characterization of maturation. 48:317-322.
fanleaf virus. 45:273-277.
fertilization. See Fertilization.
field performance. virus infections effects on. 48:7-12.
field response to methanol. 47:297-300.
flavonoids. 47:186-192.

flower. cluster development. shoot number effects on. 47:244-250.
types. 48:323-327.
flowering. base temperature. 49:74-78.
fruit. composition. cluster thinning influence on. 46:429-436.
crop load effects on. 46:478-485.
environment effects on wine. 47:329-339.
leaf removal influence on. 45:133-140, 181-187, 188-191;
maturity. leaf removal and vineyard location influence on.
46:542-558.
nitrogen fertilization effects on. 45:377-387; 49:333-340,
341-349.
fruit zone leaf removal. effects on fruit set. 49:359-366.
effect on total glycoconjugates and conjugate fraction concentration.
49:259-265.
fruiting cuttings. polyamines in organs of. 48:1-4.
fungal disease. relationship with resveratrol content of wines of
different ages. 46:1-4.
powdery mildew treatment with potassium silicate. 47:421-428.
gas exchange. defoliation. rootstock. training system. and leaf
position influence on. 45:173-180.
effects of water logging on. 45:285-290.
-leaf age interaction. 45:71-78.
-water relations. 45:333-337, 423-428.
genetic relationships. 48:492-501.
gemination. 47:152-156.
Gewürztraminer. canopy management impact. 47:77-92.
girdling. effects on fruit set. 49:359-366.
glycosides. fruit zone leaf thinning effect on. 49:35-43.
grey mold. 45:338-340.
growth. 47:251-256.
regulators. 47:152-156.
viruses effects on. 47:21-24.
hand pollination. 48:207-213.
treatment of crown gall. 47:119-123.
hormones. 48:115-120.
host/pest interactions. 49:17-22.
in vitro, dual culture with phylloxera and Vitis species. 48:157-159.
propagation. 46:195-203, 571-578.
photosynthesis. 45:71-78, 173-180, 297-304, 423-428; 46:227-
234, 306-314, 375-379, 389-391, 469-477, 478-485; 47:244-
in vitro dual culture with Vitis species. 48:157-159.
susceptibility evaluation. 48:157-159.
Pinot noir. crop level effects on wine. 47:329-339.
shoot number effects on. 47:251-256.
petylase. analysis. 45:377-387.
nitrate. effect on yeast growth in juice. 46:49-55.
phosphorus concentration. phosphorus availability. scion,
and rootstock influence on. 47:217-224.
phenological stages. 49:74-78.
phosophosynthesis. 45:71-78, 173-180, 297-304, 423-428; 46:227-
234, 306-314, 375-379, 389-391, 469-477, 478-485; 47:244-
protein synthesis. 45:267-272.
pruning. effects on crop yield and berry composition. 47:291-296;
effects on fruit set and botrytis. 49:163-170.
mechanical. on Seyval blanc. 48:482-491.
on Vitis rotundifolia. 47:291-296.
Pulliat. 48:323-327.
pollination. 49:1-5.
inhibitory effects against pollen tube growth. 46:17-21.
RAPD rootstock identification. 48:492-501.
response to nitrogen fertilization. 47:173-180.
Riesling. canopy management impact. 47:63-76.
RNA isolation. 47:181-185.
morphology. phosphorus influence on. 47:403-409.
rootstock. 45:345-348; 48:26-32.
crown gall resistant. 48:145-149.
effects on gas exchange. 45:71-78, 173-180.
effects on leaf water potential. 46:559-563.
effects on photosynthesis. 45:297-304.
phyllloreta. host utilization. 47:373-379.
Ruby Seedless. 46:559-563.
Rubus. 47:244-250, 251-256; 49:183-190, 251-258.
phylloxera. host utilization. 47:373-379.
Hanseniaspora uvarum. population during fermentation in a new winery. 46:339-344.
Harvest date. relationship to quality of grapes and raisins. 46:10-16, 493-496.
Haze. wine. phenol-peptide interaction. 46:319-338.
Headspace technique. solid-phase microextraction to determine head-space compounds. 49:100-104.
to measure interactions between yeast walls and aroma substances. 45:29-33.
Health. dietary fiber from grape pomace. 48:328-332.
ethanol metabolism. 46:449-462.
Grenache wines. free amino acid utilization. during fermentation and bottle aging. 47:313-322.
Growth chamber. temperature effects on leaf response. 46:375-379.
grapevine. See Grapevine.
Gual wine. descriptive analysis. 49:440-444.
Guide to authors. 48:527-532.
Gustation. physiology of sensory response to wine. 48:271-279.
H
Hanseniaspora uvarum. population during fermentation in a new winery. 46:339-344.
Harecetum date. relationship to quality of grapes and raisins. 46:10-16, 493-496.
Haze. wine. phenol-peptide interaction. 46:319-338.
Headspace technique. solid-phase microextraction to determine head-space compounds. 49:100-104.
to measure interactions between yeast walls and aroma substances. 45:29-33.
Health. dietary fiber from grape pomace. 48:328-332.
ethanol metabolism. 46:449-462.
Grenache wines. free amino acid utilization. during fermentation and bottle aging. 47:313-322.
Growth chamber. temperature effects on leaf response. 46:375-379.
grapevine. See Grapevine.
Gual wine. descriptive analysis. 49:440-444.
Guide to authors. 48:527-532.
Gustation. physiology of sensory response to wine. 48:271-279.

Hydraulic conductivity. shoot orientation effects on. 46:324-328.
 nitrogen deficiency effect on. 45:107-112; ellagitannin content.
 46:262-268.
 potential of Saccharomyces cerevisiae wine yeasts. ellagitannin content.
 46:262-268.

Identification. of anthocyanins in Reliance grapes. 46:339-345.
 of grapevine rootstocks. with isozymes. 46:299-305.
 with simple sequence repeat (SSR) DNA markers. 49:403-407.
 of 1,2,3,4-tetrahydro-8-carboline-3-carboxylic acids in wine samples. 45:92-101.
 of yeast strains. 45:86-91.
Im mobilized yeast. in double-layer gel beads or strands. 48:471-481.
Immunoassay for Botrytis cinerea in harvested wine grapes. 45:300-304.
Immobilized yeast, in double-layer gel beads or strands. 48:471-481.
Isozyme(s). rootstock identification. 46:299-305.
ISEM. See Immunosorbent electron microscopy.
Irrigation. effects of preveraison cup-off on wine. 49:152-162.

Juice, grape. amino acid profiles in. 47:389-402.
 color. extraction. 45:113-116, 417-422.
 polyphenoloxidase effects on. 48:13-25.
 processing effects on. 47:279-286.
 fermentation kinetics. 47:429-434.
 fining treatments. 45:417-422.
 glucosidase activities during fermentation. 45:291-296.
 hyperoxidation. 48:150-156.
 organic and inorganic acids. simultaneous separation. 48:408-412.
 processing effects on phenolics and color. 47:279-286.
 proteins. 48:100-114.
 concentration in Muscadine. 47:57-62.
 simultaneous separation of organic and inorganic acids. 48:408-412.
 thermal processing. sensory effects on Chardonnay and Semillon wines. 45:243-251.
 yield increase with macerating enzymes. 45:113-116.
Juvenile characteristics of Vitis vinifera vines. 46:195-203, 571-578.

K
Karyotypes of wine yeasts. 46:175-180.
KHT crystallization. 49:177-182.
Kieselsol fining of Seyval blanc juice and wine. 45:417-422.
Kinetic(s). characteristics of peroxidase B. 48:33-38.
 of alcoholic fermentation. effects of variety, year, and grape
 maturity on. 47:363-368.
Koshu wine. nitrogen content changes with sur lie methods. 45:312-318.
 sur lie method. 48:1-6.
Kyoho grapevines. 47:157-162; 48:115-120.

L
Labor, vineyard. Training system effects on. 47:63-76.
L-lactate. sequential injection determination in wine. 48:428-432.
Lactic acid. determination in wine. 47:11-16.
 in vitro, Inorganic acid(s), separation by capillary zone electrophoresis in wines
 and juices. 48:408-412.
 Lactobacillus plantarum. 46:166-174; 48:423-427.
 Lactobacillus. 48:502-508, 509-515.
 Lactic acid bacteria. antagonistic activity against wine yeast. 47:1-10.
 effect on ethylphenol content of red wine. 46:463-468.
 freeze-dried cell reactivation. 46:357-362.
 histamine production. 49:199-204.
 lysosome to reduce flora in must and wine. 48:49-54.
 metabolism in synthetic wine. 46:166-174.
 pre-culture conditions. 46:357-362.
 production of 2,3-butanediol isomers during fermentation by.
 46:134-137.
 volatile phenol formation. 48:443-448.
Lactobacillus. 2,3-butanediol isomers formed during fermentation by.
 46:134-137.
 relationship to sluggish fermentation. 47:1-10.
Lactobacillus plantarum. 46:166-174; 48:423-427.
 modelling of malolactic activity. 46:368-374.
 utilization of malate. 48:423-427.
Lead. distribution in grape berries. 45:220-228.
 in harvested wine grapes. 45:300-304.
 Lead, grapevine. age. interactions with fruiting and exogenous cytokinins.
 45:278-284.
 area. canopy configuration effects on. 48:492-491.
 effect on berry development and composition. 49:251-258.
 gas exchange interaction. 45:71-78.
 measurement. 45:389-391.
 arginine synthesis. 46:37-42.
 biometric data. 47:257-267.
 cell wall elasticity. 48:352-356.
 flavonols extraction. 47:186-192.
 ontogeny. 48:352-356.
 phenolic composition of. 47:186-192.
 photosynthesis. 46:469-477.
 position. effect on gas exchange in Pinot noir. 45:173-180.
 removal. effects on canopy structure, microclimate, bud survival,
 shoot density, and vine vigor. 45:123-132.
 effects on fruit composition, rot, and yield. 45:133-140.
 45:542-558.
 effects on fruit set. 49:359-366.
 effect on glycosides. 39:45-43.
 effects on wine sensory qualities. 46:352-356.
 effects on vegetative growth. 49:359-366.
 for control of Botrytis bunch rot. 45:133-140.
 RNA extraction. 47:181-185.
 rootstock influence on. 47:217-224.
 senescence influence on. 47:217-224.
 senescence. 45:278-284.
 shading effects on leaf water potential. 46:375-379.
Leuconostoc oenos. antagonism by lactic acid bacteria. 47:1-10.
2,3-butanediol isomers formed during fermentation by. 46:134-137.
colloid concentration influence on macromolecule production.
ATP generation. 46:319-323.
dehydration. 46:392-398.
Methanol toxicity to vines. 47:297-300.
Methanol. toxicity to vines. 47:297-300.
Methode Champenoise process effect on wine aroma. 49:289-294.
Methyl anthranilate. 46:392-398.
Methanol. toxicity to vines. 47:297-300.
Methane in California wines. 45:341-344.
Methanol. toxicity to vines. 47:297-300.
Methionine. toxicity to vines. 47:297-300.
Methionine. toxicity to vines. 47:297-300.
Metabolism, ethanol. 46:449-462.
Methanol. toxicity to vines. 47:297-300.
copper determination by wet and dry ashing. 45:25-28.
deacification with Schizosaccharomyces pombe. 49:408-412.
flavanoid and non-flavanoid compounds. 46:255-261.
glycerol content. relationship to varietal factors and climate. 47:193-198.
high malate. 49:408-412.
iron determination by wet and dry ashing. 45:25-28.
mannoprotein production. 49:325-332.
nitrogen fertilization effects on composition. 45:34-42.
oxidation. 49:91-94.
poly saccharide content. 48:564-570.
post-fermentation standing. changes in free anthocyanins and polymeric pigments. 45:161-166.
proteins. fermenting must. 48:100-114.
fractonation and characterization. 46:250-254.
resveratrol. concentration in Muscadin. 47:57-62.
traction from Gamay skins. 47:287-290.
sugar content. relationship to varietal factors and climate. 47:193-198.
turbidity effect on yeast cell wall porosity. 49:325-332.

N
N-carbamoylputrescine. 48:137-144.
necrosis. See also infusion necrosis, Grapevine. Disease.
nitrogen source effects on. 47:173-180.
shading effects on. 47:173-180.
nitrogen. compounds. in seeds. 47:268-278.
utilization during fermentation and bottle aging. 47:313-322.
concentration in vines. 47:389-402; 48:115-120.
content of wines. 45:312-318; 47:127-133.
fertilization. influence on must and wine composition. 45:34-42.
on trickle-irrigated Thompson Seedless vines. 49:191-198.
White Riesling vines. 45:34-42.
reserves. 15N applications contribution to. 45:327-332.
sources. effects on Pinot noir vines. 47:173-180.
sparkling wine foam characteristics. 45:518-524.
Noble wines. anthocyanin polymer structures. 47:323-328.
processing effects on phenolics and color. 47:279-286.
Non-flavanoid compounds and flavonoid compounds in standing must. 46:255-261.
n-propanol. production during fermentation. 45:107-112.
Nucleic acids in grapevine tissue. 47:181-185.
Nutrient. reserves in Kyoho vines. 48:115-120.
Nutrition. grapevine. See also Mineral nutrition. Grapevine.

O
Oak. barrel aging. See Barrel aging.
barrel-to-barrel variation in oak extractives. 47:17-20.
cask properties. 48:502-508, 509-515.
chemical composition. 48:408-412.
quantification. 46:419-423.
content of phenolic acid and aldehyde in flavor components. 47:441-446.
ethanol concentration effects on solids extraction. 46:98-115.

Oxidation. ascorbic acid effects on post-disgorgement oxidative stability of sparkling wine. copper influence on. 46:380-374.
iron influence on. 46:380-374.
manganese influence on. 46:380-374.

Oxidation. effects on fermentation kinetics. 47:429-434.

P
Palomino fino grapes. characterization. 48:317-322.
Palynological classification of seedless grapes. 48:207-213.
Parellada wines. 46:5-9, 529-541, 564-570.
Pectinase. use in juice processing. 45:113-116.
interactions with L. oenos and during red wine vinification. 45:49-55.
Pedunculate oak. ellagatannin content. 46:262-268.
Peptides. extraction from seeds. 47:268-278.
from seeds into wine. 47:268-278.
Pest(s). leafhoppers. 48:291-302.
stability. 45:410-416.
synthesis. in vivo response to anaerobiosis. 45:267-272.
Protonmotive force generation during malolactic fermentation. 46:319-323.
Pulsed field gel electrophoresis (PFGE), plasmid and chromosome charac-
Putrescine. biosynthesis. 48:137-144.
in fruiting grape cuttings. 48:80-84, 85-92.
PVPP effects on muscadine wines. 46:155-158.
Quality, grape. harvest date effects on. 46:10-16.
Quercetin, concentrations in wines. 49:142-151.
processing enzyme effects on levels in Pinot noir and Cabernet Sauvignon wines. 48:39-48.
Quercus. See oak.
R
Raisins. harvest date. effects on composition and yield. 46:10-16.
furrow irrigation effects on ripening. 49:375-382.
pruning level and cane adjustment effects on production and quality. 45:141-149.
Thompson Seedless clone comparisons. 46:204-208.
Randomly Amplified Polymorphic DNA. 47:145-151.
Red wine. See Wine.
Reliance grapes. anthocyanin profile. 46:339-345.
Reserve nitrogen, grapevine. See Nitrogen.
Residual sugars in wine, fermentation by Brettanomyces/Dekkera spp. in red wine. 46:463-468.
Restriction fragment length polymorphism. plasmid and chromosome charac-
extration from grape skin during fermentation. 47:287-290.
glucose. 48:214-219.
oxidation by peroxidase isozyme. 48:33-38.
production by grape berries. 47:57-62, 93-99.
α-Rhamnosidase activity of yeast during fermentation. 45:291-296.
Rhamnogalacturonan. charge properties. 47:25-30.
Rhamnogalacturanan. charge properties. 47:25-30.
Riesling grapevines. artificial shade effects on bud necrosis. 49:429-439.
carbohydrate changes and cold hardness. 47:31-36.
fruit zone leaf removal. effect on canopy structure, microclimate, bud survival, shoot density, and vine vigor. 45:123-132.
effect on glycosides. 49:35-43, 259-265.
effect on total glycoconjugates and conjugate fraction concentration. 49.
effect on yield, composition, and fruit rot. 45:133-140.
Riesling wine. glycoconjugates. 48:397-402.
nitrogen vineyard fertilization. influence on yeast growth in juice. 46:49-55.
Ripening. See Berry and Grape berry.
RNA. yield and quality from grape berries at different developmental stages. 46:315-318.
Root(s). grapevine. characteristics. phosphorus influence on. 47:403-409.
defoliation effects on growth. 46:306-314.
St. George. root distribution in gravelly clay loam. 45:345-348.
Schizosaccharomyces pombe. deacidification of high malate must with 49:408-412.
Scion. influence on shoot growth, leaf area, and petiole P in vines. 47:217-
Seeding. potassium bitartrate. of sherry. 46:525-528.
Seedless grapes. palynological classification. 48:207-213.
Seeds. grape. amino acid extraction from. 47:268-278.
leak distribution. 45:220-228.
peptides. 47:268-278.
phenols into wine. 47:268-278.
weights of, from 25 grape varieties. 47:268-278.
Selenium in table wines. 49:115-118.
Semillon wine. sensory effects of thermal processing on Chardonnay and Semillon. 45:243-251.
Sensory characteristics of grapes. profiling. 47:301-308.
Sensory characteristics of wine. See also specific characteristics.
as a basis for sensory evaluation. 49:240-250.
Sensory effects of thermal processing on Chardonnay and Sherry. aroma compounds. 49:240-250.
Shading. See Canopy management, Grapevine, Microclimate.
Sherry. aroma compounds. 49:240-250.
sodium ascorbate. 49:240-250.
Spermidine. in fruiting grape cuttings. 48:80-84, 85-92.
Sterols. fermentation activity in grape musts. 49:125-134.
Stability, wine. nitrogenous composition of grape seeds contribution to. 49:240-250.
Streptomycin. effects on pollen germination and ovule and seed development. 48:71-79.
Succinic acid production during fermentation. 46:143-147.
Sucrose accumulation in grapes. 48:403-407.
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose-metabolizing enzyme</td>
<td>48:403-407</td>
</tr>
<tr>
<td>Sugar(s), content in white winemaking products</td>
<td>47:193-198</td>
</tr>
<tr>
<td>effects on the growth rates and cell biomass of wine yeasts</td>
<td>49:283-288</td>
</tr>
<tr>
<td>partial defoliation effects on concentration</td>
<td>46:306-314</td>
</tr>
<tr>
<td>seasonal changes in and cold hardiness of vines</td>
<td>47:31-36</td>
</tr>
<tr>
<td>uptake capacity of yeasts</td>
<td>46:175-180</td>
</tr>
<tr>
<td>Sulfite(s), reductase</td>
<td>46:269-273</td>
</tr>
<tr>
<td>residue persistence on table grapes</td>
<td>48:121-124</td>
</tr>
<tr>
<td>sulfate reduction to</td>
<td>45:107-112</td>
</tr>
<tr>
<td>Sulfur compounds, bis(2-hydroxyethyl) disulfide influence on wine aroma</td>
<td>46:84-87</td>
</tr>
<tr>
<td>complex media effects on GC analysis in Cognac</td>
<td>48:333-338</td>
</tr>
<tr>
<td>detection in Cognac</td>
<td>48:333-338</td>
</tr>
<tr>
<td>Sulfur dioxide production by yeast</td>
<td>45:107-112, 45:464-469</td>
</tr>
<tr>
<td>volatile compounds in California wines</td>
<td>45:341-344</td>
</tr>
<tr>
<td>Sultana grapevines, ripening characteristics under furrow irrigation</td>
<td>49:375-382</td>
</tr>
<tr>
<td>water logging</td>
<td>45:285-290</td>
</tr>
<tr>
<td>Sun exposure of grape clusters effects on quercetin concentration in grapes and wine</td>
<td>46:187-194</td>
</tr>
<tr>
<td>Sur lie method for Koshu wines</td>
<td>45:312-318; 48:1-6</td>
</tr>
<tr>
<td>Sweetness, wine</td>
<td>46:128-133</td>
</tr>
<tr>
<td>Syndrome X</td>
<td>46:449-462</td>
</tr>
<tr>
<td>Synthetic wine, lactic acid bacteria growth and metabolism in</td>
<td>46:166-174</td>
</tr>
<tr>
<td>Syringaldehyde, influence of wood treatment, temperature, and maceration time</td>
<td>47:441-446</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Table grapes, anthocyanin profile of Reliance by HPLC</td>
<td>46:339-345</td>
</tr>
<tr>
<td>descriptive profiling of cultivars</td>
<td>47:301-308</td>
</tr>
<tr>
<td>Flame Seedless, cluster thinning</td>
<td>46:429-436</td>
</tr>
<tr>
<td>Itala Red, induced seedlessness</td>
<td>47:340-342</td>
</tr>
<tr>
<td>palynological classification of seedless grapes</td>
<td>48:207-213</td>
</tr>
<tr>
<td>Ruby Seedless</td>
<td>46:559-563</td>
</tr>
<tr>
<td>streptomyces-induced seedlessness</td>
<td>47:340-342</td>
</tr>
<tr>
<td>sulfite residue persistence</td>
<td>48:121-124</td>
</tr>
<tr>
<td>sulfur dioxide fumigation</td>
<td>45:121-124</td>
</tr>
<tr>
<td>Thompson Seedless, harvest date relationship to fruit and raisin quality</td>
<td>46:493-498</td>
</tr>
<tr>
<td>Tank aging, See Aging</td>
<td></td>
</tr>
<tr>
<td>Tannin(s), anthocyanin interactions</td>
<td>45:349-352</td>
</tr>
<tr>
<td>charge properties</td>
<td>47:25-30</td>
</tr>
<tr>
<td>in grape pomace</td>
<td>49:135-141</td>
</tr>
<tr>
<td>oak</td>
<td>45:429-434; 46:98-115</td>
</tr>
<tr>
<td>Tartrate, acid production in pomace</td>
<td>49:35-99</td>
</tr>
<tr>
<td>crystallization</td>
<td>49:177-182</td>
</tr>
<tr>
<td>Taste, physiology of human sensory response to wine</td>
<td>48:271-273</td>
</tr>
<tr>
<td>thresholds of phenolic extracts of oak</td>
<td>45:429-434</td>
</tr>
<tr>
<td>Temperature, See also Acclimation, Cold hardiness</td>
<td></td>
</tr>
<tr>
<td>1,2,3,4-Tetrahydro-β-carbol ine-3-carboxylic acids identification in wine samples</td>
<td>45:92-101</td>
</tr>
<tr>
<td>Thermal processing, effect on glycoconjugates in White Riesling</td>
<td>48:397-402</td>
</tr>
<tr>
<td>sensory effects on Chardonnay and Semillon wines</td>
<td>45:243-251</td>
</tr>
<tr>
<td>Thermotherapy, 46:243-249; 48:131-136</td>
<td></td>
</tr>
<tr>
<td>Thompson Seedless grapevines, cane adjustment effects on raisin production and quality</td>
<td>45:141-149</td>
</tr>
<tr>
<td>clones, for raisin production</td>
<td>45:150-154</td>
</tr>
<tr>
<td>harvest date effects on fruit composition, characteristics, and yield</td>
<td>46:10-16</td>
</tr>
<tr>
<td>relationship to fruit and raisin quality</td>
<td>46:493-498</td>
</tr>
<tr>
<td>nitrogen fertilization on trickle-irrigated vines</td>
<td>48:191-198</td>
</tr>
<tr>
<td>pruning effects on raisin production and quality</td>
<td>45:141-149</td>
</tr>
<tr>
<td>waterberry, 46:579-580</td>
<td></td>
</tr>
<tr>
<td>Touriga Francesa grapevines</td>
<td>49:74-78</td>
</tr>
<tr>
<td>trans-8-methyl-γ-octalactone, aroma threshold</td>
<td>46:292-294</td>
</tr>
<tr>
<td>Transmissible agents, viroids</td>
<td>47:21-24</td>
</tr>
<tr>
<td>trans-Resveratrol, oxidation by peroxidase isoenzyme</td>
<td>48:33-38</td>
</tr>
<tr>
<td>processing enzymes effects on</td>
<td>48:39-48</td>
</tr>
<tr>
<td>Transpiration, influence of defoliation, rootstock, training system, and leaf position</td>
<td>45:173-180</td>
</tr>
<tr>
<td>methanol effects on</td>
<td>47:297-300</td>
</tr>
<tr>
<td>Training system, grapevine, See Canopy management</td>
<td></td>
</tr>
<tr>
<td>Transduction mechanisms in human sensory response to wine</td>
<td>48:271-279</td>
</tr>
<tr>
<td>Trebbiano Romagnolo vines, virus effects on</td>
<td>48:7-12</td>
</tr>
<tr>
<td>Treixadura wines</td>
<td>47:309-312</td>
</tr>
<tr>
<td>Trellising, See also Canopy management, Grapevine, Chancellor vines</td>
<td>46:98-97</td>
</tr>
<tr>
<td>for mechanized vineyards</td>
<td>46:116-127</td>
</tr>
<tr>
<td>Pinot noir vines</td>
<td>47:329-339</td>
</tr>
<tr>
<td>Riesling vines</td>
<td>47:63-76</td>
</tr>
<tr>
<td>shoot orientation</td>
<td>46:324-329</td>
</tr>
<tr>
<td>Trithydroxystilbene, See also resveratrol, concentration in muscadine grapes and wines</td>
<td>47:57-62</td>
</tr>
<tr>
<td>concentration in Japanese grapes and wines</td>
<td>47:93-99</td>
</tr>
<tr>
<td>Tronçais oak</td>
<td>45:429-434</td>
</tr>
<tr>
<td>See also Oak</td>
<td></td>
</tr>
<tr>
<td>Trunk volume effects on yield and fruit composition</td>
<td>45:181-187</td>
</tr>
<tr>
<td>Turbidity, wine</td>
<td>46:319-338</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Urea, ethyl carbamate formation, involvement in</td>
<td>45:17-24</td>
</tr>
<tr>
<td>reduction by acid urease</td>
<td>45:17-24</td>
</tr>
<tr>
<td>Urethane, See also ethyl carbamate, formation from arginine degradation by wine lactic acid bacteria</td>
<td>45:235-242</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VA mycorrhiza, interaction with soil lime content</td>
<td>48:93-99</td>
</tr>
<tr>
<td>Vacuum filtration</td>
<td>47:313-322</td>
</tr>
<tr>
<td>Vanillin, influence of wood treatment, temperature, and maceration time</td>
<td>47:441-446</td>
</tr>
<tr>
<td>Vargelid differentiation, of Penedes varietal musts</td>
<td>46:283-291</td>
</tr>
<tr>
<td>Vargelid identification, RAPD markers</td>
<td>48:492-501</td>
</tr>
<tr>
<td>Vegetative response, to girdling and leaf removal</td>
<td>49:359-366</td>
</tr>
<tr>
<td>to shoot orientation</td>
<td>46:324-328</td>
</tr>
<tr>
<td>Velum formation by flor yeasts in sherry</td>
<td>48:55-62, 71-79</td>
</tr>
<tr>
<td>Verdello wine, descriptive analysis</td>
<td>49:440-444</td>
</tr>
<tr>
<td>Vidal blanc wine aroma characteristics</td>
<td>46:56-62</td>
</tr>
<tr>
<td>Vine, capacity</td>
<td>47:244-250</td>
</tr>
<tr>
<td>growth flush</td>
<td>47:251-256</td>
</tr>
<tr>
<td>Vineyard, labor requirements, canopy management effects on</td>
<td>47:63-76</td>
</tr>
<tr>
<td>location, effects on Gewürztraminer</td>
<td>47:77-92</td>
</tr>
<tr>
<td>multiple crops by use of water stress</td>
<td>47:157-162</td>
</tr>
<tr>
<td>yield estimation</td>
<td>45:63-69</td>
</tr>
<tr>
<td>Vinification treatments, influence on aroma constituents</td>
<td>48:198-206</td>
</tr>
<tr>
<td>influence on resveratrol concentration</td>
<td>48:214-219</td>
</tr>
<tr>
<td>Virus, See also specific virus, effects on growth, yield, and fruit</td>
<td>48:7-12</td>
</tr>
<tr>
<td>grafted-transmission</td>
<td>48:7-12</td>
</tr>
<tr>
<td>indexing</td>
<td>47:239-243</td>
</tr>
<tr>
<td>leafroll, and rugose wood</td>
<td>48:438-442</td>
</tr>
<tr>
<td>detection by ELISA and symptomatology</td>
<td>47:239-243</td>
</tr>
<tr>
<td>purification procedure</td>
<td>48:521-524</td>
</tr>
<tr>
<td>rootstock identification</td>
<td>49:403-407</td>
</tr>
<tr>
<td>yields</td>
<td>48:521-524</td>
</tr>
<tr>
<td>Viscosity, wine</td>
<td>46:128-133</td>
</tr>
</tbody>
</table>

Vitis coignetiae. 48:117-120.

Vitis vinifera. 48:323-327.

Vitis rotundifolia. 48:225-228.

Vitis rotundifolia. 48:283-291.

wines, anthocyanin polymer structures. 47:323-328.

descriptive analysis. 46:5-9.

anthocyanins, changes during fermentation and post-fermentation standing of musts. 45:161-166.

Burgundy Pinot noir wines. 46:392-398.

carbonic maceration, effects on. 47:134-144.

comparison using GC-olfactometry. 45:201-212; 46:56-62.

descriptive analysis. 46:5-9.

ethyl anthranilate. 46:392-398.

ethyl cinnamate. 46:392-398.

ethyl 2,3-dihydrocinnamate. 46:392-398.

methyl anthranilate. 46:392-398.

echta. See also Sensory.

Burgundy Pinot noir wines. 46:392-398.

carbonic maceration, effects on. 47:134-144.

comparison using GC-olfactometry. 45:201-212; 46:56-62.

descriptive analysis. 46:5-9.

ethyl anthranilate. 46:392-398.

ethyl cinnamate. 46:392-398.
ethyl 2,3-dihydrocinnamate. 46:392-398.

interactions between yeast walls and aroma substances. 45:29-33.

2-mercaptoethanol. 46:84-87.
methyl anthranilate. 46:392-398.

eak wood age effects on. 47:134-144.

physiology of human sensory response to wine. 48:271-279.

port wine. 47:37-41.

amino nitrogen fraction. 49:125-134.

anthocyanins. changes during fermentation and post-fermentation standing of musts. 45:161-166.

irrigation cutoff timing effects on. 49:152-162.

oxidative changes. 48:229-228.

polymer structure. anthocyanin polymer structures. 47:323-328.

skin fermentation time effects on. 45:56-62; 47:323-328; 49:152-162.

-tannin interactions. 45:349-352.

aroma. See also Sensory.

basal leaf removal effects on. 46:542-558.

bis(2-hydroxyethyl) disulfide, precursor of off-odor. 46:84-87.

Burgundy Pinot noir wines. 46:392-398.

carbonic maceration, effects on. 47:134-144.

comparison using GC-olfactometry. 45:201-212; 46:56-62.

amino nitrogen fraction. 49:125-134.

anthocyanins. changes during fermentation and post-fermentation standing of musts. 45:161-166.

irrigation cutoff timing effects on. 49:152-162.

oxidative changes. 48:229-228.

polymer structure. anthocyanin polymer structures. 47:323-328.

skin fermentation time effects on. 45:56-62; 47:323-328; 49:152-162.

-tannin interactions. 45:349-352.

aroma. See also Sensory.

basal leaf removal effects on. 46:542-558.

bis(2-hydroxyethyl) disulfide, precursor of off-odor. 46:84-87.

Burgundy Pinot noir wines. 46:392-398.
bitterness. time-intensity studies. 46:128-133.
Cabernet Sauvignon. See Cabernet Sauvignon wine.
cadmium determination in. 45:305-311.
canopy manipulation effects on. Gewürztraminer. 47:77-92.
carbohydrate analysis by capillary gas liquid chromatography. 45:229-234.
carbonic maceration. 47:134-144.
carboxylic acids relations hip to skin contact time. 45:309-312.
catechin concentration. 49:23-34.
effect on sourness and bitterness. 45:6-10.
catecholase activity, fining treatment effects on. 45:417-422.
catechin concentration. 49:23-34.
colonization. 47:49-55.
cold stabilization. 49:177-182.
colloid concentration influence on yeast macromolecule produc-
tion. 46:486-492.
color. See also Color.
discoloration of sherry. 46:138-142.
fermentation temperature effects on. 48:198-206.
flavonoids correlations. 46:295-298.
tining treatment effects on. 45:417-422; 46:155-158.
irrigation cutoff timing effects on. 49:152-162.
measurement. 48:357-363, 364-369.
Port wine. 47:37-41.
processing effects on. 47:279-286.
red wine colorimetric parameters. 46:353-356.
skin fermentation time effects on. 45:56-62; 49:152-162.
vine defoliation effects on. 46:306-314.
comparison of composition of oak and tank aging. 45:11-16.
comparison French-American hybrid wines with White Riesling
using gas chromatography-offactometry. 45:201-212.
composition, improvement with cryotolerant S. cerevisiae. 46:143-147.
nitrogenous composition of grape seeds contribution to.
47:268-278.
skin contact time effects on. 47:309-312.
condensation products in red wine. 48:370-373.
volatile components. 45:401-406.
corrilation between the biogenic amines and other wine com-
pounds in wine. 49:268-278.
density. ethanol concentration effects on temporal perception.
descriptive analysis. 46:5-9; 49:306-318, 440-444.
dessert. alcohol content determination. 48:220-224.
differentiation techniques. 48:285-291.
effects of temperature, pH, and sugar concentration on the growth
rates and cell biomass of wine yeasts. 49:268-268.
epicatechin concentrations. 49:23-34.
ethanol. analysis. 48:280-284.
concentration effects on temporal perception of viscosity
and density. 49:306-318.
effect on sourness and bitterness. 45:6-10.
fenvinification. See Fenvinification, Alcoholic fermentation, and Mal-
olastic fermentation.
fining wine proteins. 49:231-239.
tining treatment effects on. 45:417-422; 46:155-158, 329-338;
48:303-309.
flavonoids. flavonoids, in red wines. 49:23-34.
correlation with color in red wines. 46:295-298.
flavor. See also Flavor and Sensory.
descriptive analysis. 46:5-9.
nitrogenous composition of grape seeds contribution to.
47:268-278.
oak effects on. 47:163-172.
physiology of human sensory response to wine. 48:271-279.
skin fermentation time effects on. 45:56-62; 47:441-446.
time-intensity studies. 46:128-133.
filtration. effect on sparkling wine foam. 45:407-409.
fortified. 47:37-41.
free amino acid utilization during fermentation and bottle-aging.
47:313-322.
furan extraction. 47:163-172.
glycogenogenuous. 48:99-102.
glycprotein characterization. 45:410-416.
headspace compounds. 49:100-104.
heat-stable proteins. 45:410-416.
histamine producing lactic acid bacteria. 49:199-204.
Hungarian red. 46:67-74.
hydroxycinnamic acids. 48:225-228.
interactions between L. oenos and Pediococcus spp. during
vinification. 49:45-55.
instability. 46:509-513.
L-lactate. sequential injection, determination. 48:428-432.
lactic acid. determination. 47:11-16.
histamine production. 49:199-204.
lead content. 45:305-311.
maceration time effects on. 47:441-446.
malic acid determination. 47:11-16.
malolactic fermentation. See Fermentation.
model. See Model wines.
muscadine. fining effects on. 46:155-158.
resveratrol concentration. 47:57-62.
nitrogen content. changes in made by sur lie method. 45:312-318.
depletion. effect on hydrogen sulfide production. 46:269-
273.
determination. 47:127-133.
nitrogenous composition of grape seeds contribution to composi-
tion. 47:268-278.
Noble. See Noble wine.
oak. aging. See Aging.
elagitaninns role in oxidation of red wine. 47:103-107.
extraction of volatile compounds. 47:163-172.
wood age effects on aroma composition. 47:134-144.
oak-related compounds. 47:163-172, 441-446.
odor-active compounds. 46:392-398.
bi(2-hydroxyethyl) disulphide. 46:84-87.
odor analysis, using gas chromatography-offactometry 45:201-
212; 46:392-398.
orogenic and inorganic acids. simultaneous separation. 48:408-
412.
73, 91-94.
p-coumaric acid concentrations. 49:142-151.
pH. effect on sourness and bitterness. 45:6-10.
effect on stuck fermentations. 49:295-301.
phenolic(s). See also Phenolic.
fining treatment effects on. 45:417-422; 46:155-158, 329-
338.
influence of wood treatment, temperature, and maceration
time. 47:441-446.
microbial synthesis. 48:443-448.
oxidative changes in during winemaking. 48:225-228; 49:95-
99.
phenological stages. 49:74-78, 91-94.
Pinot noir. canopy management effects on composition and
oak aging effects on. 46:67-74; 47:163-172.
processing effects on. 47:279-286.
subject index

500

separation by HPLC. 45:1-5.
skin fermentation time effects on. 45:56-62.
temperature effects on. 48:198-206.
polymeric pigments. changes during fermentation and post-fer-
mentation standing of musts. 45:161-166.
Port. vinification methods. 47:37-41.
precipitation of calcium tartrate. 46:509-513.
protein. fingerprinting wine proteins. 49:231-239.
precipitation of calcium tartrate. 46:509-513.
potassium concentration and pH imbalance as a cause of stuck
fermentations. 49:295-301.
precipitation of calcium tartrate. 46:509-513.
precipitation of calcium tartrate. 46:509-513.
protein. fingerprinting wine proteins. 49:231-239.
polymeric pigments. changes during fermentation and post-fer-
mentation standing of musts. 45:161-166.
polymeric pigments. changes during fermentation and post-fer-
mentation standing of musts. 45:161-166.

501

502

sensory analysis. See also Descriptive sensory analysis, Sensory,
Flavor, and Aroma.
bis(2-hydroxyethyl) disulfide, precursor to off-odor. 46:84-
87.
bitterness. 45:6-10.
canopy management effects on. 46:542-558; 47:77-92,
329-339.
catechin concentration effect on sourness and bitterness.
color. correlation with flavonoids. 46:295-298.
descriptive analysis. 46:5-9, 529-541.
descriptors. 48:198-206.
etanol effect on sourness and bitterness. 45:6-10.
on temporal perception of viscosity and density. 49:306-
318.
fermentation temperature effects. 48:198-206.
fining treatment effects on. 45:417-422; 46:155-158.
hydrolyzed flavor precursors contribution to quality of Shiraz
oak phenols influence on. 45:429-434.
identification. 48:177-180.
Methode Champenoise process effect on aroma. 49:289-
294.
pH effect on sourness and bitterness. 45:6-10.
physiology of human sensory response to wine. 48:271-
279.
skin contact time effects on. 47:309-312.
thermal processing effects on Chardonnay and Semillon.
45:243-251.
vineyard location influence on. 46:542-558.
sequential injection. determination of L-lactate in wine. 48:428-
432.

503

sherry, aging. 49:240-250.
discoloring process. 46:138-142.
seeding. 46:525-528.
skin contact time. effects on color, anthocyanins, phenols. 49:152-
162.
sourness. 45:6-10.
time-intensity studies. 46:128-133.
sparkling. See also Sparkling wine.
bottle-fermented. yeast immobilized in double-layer gel
beads or strands. 48:471-481.
calcium tartrate precipitation. 46:509-513.
filtration effects on foam behavior. 45:407-409.
foam active compounds in. 45:407-409; 45:518-524.
vinification and variety effect on foam capacity. 49:397-
402.
spirit mixtures. 47:441-446.
stability. nitrogenous composition of grape seeds contribution to.
47:268-278.
stabilization. 49:177-182.
starter cultures. 45:644-649.
scrubbers. volatile components. 45:401-406.
storage. ethyl carbamate formation during. 45:17-24.
sulfur compounds in wine. 46:84-87.
sulfur dioxide, to reduce browning. 45:417-422.
sur lie method. effect on nitrogen compounds. 45:312-318.
free amino acid behavior and proteolytic activities during
fermentation. 49:1-6.
storage, effect on glycoconjugates. 48:397-402.
sweetness. time-intensity studies. 46:128-133.
synthetic. lactic acid bacteria in. 46:166-174.
tannin. -anthocyanin interactions. 45:349-352.
charge properties. 47:25-50.
oak. effects on flavor. 45:429-434.
tasting panels. 48:177-180.
terpenol content. 45:291-296.
temperature, effects on the growth rates and cell biomass of wine
yeasts. 49:283-288.
thermal processing, effects on glycoconjugates in White Riesling.
45:397-402.
sensory effects on Chardonnay and Semillon. 45:243-251.
time-intensity studies to evaluate taste and mouthfeel. 46:128-
133; 49:306-318.
vacuum filtration. 47:313-322.
viniatiflora differentiation. 46:5-9, 529-541.
vintage differentiation. 46:5-9, 529-541.
viscosity. time-intensity studies. 45:312-318.
volatile compounds. 48:44-49.
volatile sulfur compounds. 45:341-344.
white, color measurement. 48:364-369.
furanec for determination for differentiation of. 46:181-186.
identification. 48:177-180.
poly saccharide levels. 46:564-570.

504

yeast. See yeast.
zinc content. 45:305-311.

XYZ

Xarel.lo wines. 46:5-9, 529-541, 564-570.
Xiphinema index. establishing in dual culture with grape. 45:273-277.
Xylem exudate, total nitrogen. 45:327-332.

505

Yeasts. See also specific yeast.

506

amino acid. anthocyanin adsorption by yeast lees. 48:433-437.
agglutination by lactic acid bacteria. 47:1-10.
anzchluss on adsorption by lees. 48:433-437.
- assimilatable nitrogenous compounds in juice. 49:125-134.
avoysis. in sparkling wine. 46:471-481.
Brettanomyces/Dekkera spp. effect on ethylphenol content of red
2,3-butanediol isomers formed during fermentation by. 46:134-
137.

507

cell wall composition. 49:325-332.
cellular proliferation. 46:357-362.
characterization methods. 46:175-180.
chromosomes. 46:175-180.
colloid concentration influence on yeast macromolecule production. 46:486-492.
contribution of strains. Saccharomyces and non-Saccharomyces contribution to aroma components. 47:206-216.
colonization by volatile acids. 46:278-280.
coniferous trees, contribution of strains. 49:71-79.
Saccharomyces bayanus. 47:340-345.
See also Saccharomyces bayanus.
sensitivities to fluoride. 49:408-412.
simultaneous separation of organic and inorganic acids. 48:408-412.
sterol content of musts in the presence of growing cells. 47:429-434.
strain(s), effect on hydrogen sulfide production during fermentation. 45:107-112.
sugar concentration effects on the growth rates and cell biomass of wine yeasts. 49:283-288.
sugar uptake capacity effects on alcoholic fermentation activity. 46:175-180.
thermotolerant Saccharomyces cerevisiae. 49:319-324.
Torulaspora delbrueckii. See Torulaspora delbrueckii.
turbidity effect on yeast cell wall porosity. 49:325-332.
volatile aroma compounds. skin contact time. 47:309-312.
walls, interactions with volatile compounds in model wines. 45:29-33.
yield, grapevine. canopy manipulation. See Canopy management, Pruning.
components. field response of V. vinifera to methanol. 47:297-300.
crop load influence on. 46:478-485.
estimation. 45:63-69.
leafhopper feeding impact on. 48:291-302.
muscadine vines. 47:291-296.
rootstock effects on. 45:181-187.
Ruprestris virus effects on. 48:449-458.
variation, pollination and stigma receptivity. 49:1-5.
Zinc in wine. potentiometric stripping determination. 45:305-311.