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 21 

Abstract: Multispectral and conventional cameras, RGB (red, green, blue) imager, onboard unmanned 22 

aerial vehicles (UAVs) provide very high spatial, temporal, and spectral resolution data. To evaluate the 23 

capacity of these techniques to assess vineyard water status, we carried out a study in a cv. Monastrell 24 

vineyard located in southeastern Spain in 2018 and 2019. Several irrigation strategies were applied, 25 

including different water quality and quantity regimes. Flights were performed using conventional and 26 

multispectral cameras mounted on the UAV throughout the growth cycle. Several visible and 27 

multispectral vegetation indices (VIs) were determined from the images with only vegetation (without 28 

soil and shadows, among others). Stem water potential was measured by pressure chamber and the water 29 

stress integral (Sψ) was obtained along the season. Simple linear regression models that used VIs and 30 
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green cover canopy (GCC) to predict Sψ were tested. The results indicate that visible VIs best correlated 31 

with Sψ. The green leaf index (GLI), visible atmospherically resistance index (VARI), and GCC showed 32 

the best fits in 2018, with R2 = 0.8, 0.72, and 0.73, respectively. When the best model developed with 33 

the 2018 data was applied to the 2019 data set, the model fit poorly. This suggests that on-ground 34 

measurements of vine stress must be taken each growing season to redevelop a model that predicts water 35 

stress from UAV based imaging. 36 

Key words: multispectral images, RGB images, stem water potential, UAV, vineyard, water stress 37 

Introduction 38 

Grapevine water status is major determinant for vine performance and wine composition  39 

(Jackson and Lombard 1993) potentially affected by many soil and environmental factors interacting 40 

with the vine physiology and the vineyard management. In arid and semi-arid areas, irrigation (i.e. the 41 

watering regime and its salinity level) plays an important role in determining vine water status (Mirás-42 

Avalos and Intrigliolo 2017).  43 

Efforts have therefore been made to improve water use efficiency and crop yields, moving 44 

towards a more sustainable agricultural water management. The concept of precision viticulture (PV) 45 

seeks to describe the in-plot vineyard spatial variability to provide recommendations with the objective 46 

of improving management efficiency in terms of quality, production and sustainability (Matese and Di 47 

Gennaro 2015). One of the techniques that pursues a sustainable agricultural water management is 48 

regulated deficit irrigation (RDI), which consists of replacing only part of the potential grapevine 49 

evapotranspiration during some previously established phenological periods. Therefore, RDI is a 50 

standard practice in Mediterranean viticulture, as an effective means of regulating the water status of 51 
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grapevines under a pressing water scarcity scenario (Romero et al. 2010). The effect of RDI depends on 52 

vine phenological stage and plant water stress, as generated by water restrictions and soil and climatic 53 

conditions. The application of RDI can mitigate the negative effects of climate change on grapevine 54 

productivity and fruit ripening (Buesa et al. 2017), while ensuring the sustainable use of water resources.  55 

Implementation of proper RDI strategies demands the monitoring of grapevine water status; 56 

there are different methods to achieve this goal. These include: 1) a more direct determination of plant 57 

water status, such as stomatal conductance, stem water potential (Ψstem), leaf water potential, pre-dawn 58 

leaf water potential (Ψpd), and carbon isotope composition measurements; and 2) sensor monitoring 59 

systems collecting a large number of indirect measurements over a period of time, such as transpiration 60 

measurements, trunk diameter fluctuations, and leaf and canopy temperatures (Acevedo-Opazo et al. 61 

2008b). Some authors have proposed midday Ψstem measurements as a significant physiological 62 

indicator of water status for irrigated and rain-fed grapevines (Acevedo-Opazo et al. 2010). These 63 

measurements are manual, time-consuming, and may be unrepresentative of the spatial variability of 64 

water status over the whole farm.  65 

There are many available tools which are used for PV. One of them is the use of remote sensing 66 

imagery data from satellites, airplanes, balloons, helicopters, and unmanned aerial vehicles (UAVs) 67 

(Boukoberine et al. 2019) to collect spatial data. UAVs with lightweight, high-quality geometric and 68 

radiometric sensors allow users to obtain very high spatial (centimetric) and temporal resolution data 69 

(Pádua et al. 2017). Spectral reflectance data from on-board sensors have been used to monitor 70 

biochemical and biophysical attributes, such as biomass, leaf pigment contents, canopy water status, 71 

crop coefficient, and crop evapotranspiration (Zarco-Tejada et al. 2005, Acevedo-Opazo et al. 2008b, 72 

Berni et al. 2009, Baluja et al. 2012, Ballesteros et al. 2015). Spectral data are usually employed as a 73 
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mathematical combination of two or more bands to generate vegetation indices (VIs) based on visible or 74 

RGB (red, green, blue), red-edge, and near infrared (NIR) regions of the electromagnetic spectrum, 75 

among others (Pôças et al. 2015, Romero et al. 2018). The visible part of the spectrum is characterized 76 

by low reflectance, due to the strong absorption of foliar pigments such as chlorophyll and carotenoids. 77 

The NIR region is characterized by high reflectance, and the thermal domain canopy is characterized by 78 

its temperature. As stomata close under pressure stress, transpiration stops and leaf temperatures rise. 79 

Thus, leaf or canopy temperatures can be used as a predictor of plant stress (Costa et al. 2010). Recent 80 

studies to detect grapevine water stress have used thermal measurements obtained from aerial imagery. 81 

Some of them used several multispectral VIs, but few used RGB VIs, as the visible part of the spectrum 82 

is characterized by low reflectance (as mentioned above) (Möller et al. 2007, Rodríguez-Pérez et al. 83 

2007, Rossini et al. 2013, Zarco-Tejada et al. 2013, Pôças et al. 2015). Möller et al. (2007) used thermal 84 

and visible images to develop models for estimating Ψstem. However, RGB VIs were not computed and 85 

RGB imagery were used only as supporting data. Rodríguez-Pérez et al. (2007), Zarco-Tejada et al. 86 

(2013), and Rossini et al. (2013) used the photochemical reflectance index (PRI), suggesting its use as 87 

good indicator for water stress monitoring. PRI uses the 530 and 550 wavelengths of the visible region 88 

electromagnetic spectrum. Pôças et al. (2015) also used hyperspectral reflectance indices to predict 89 

vineyard Ψpd.  90 

Most research studies have adapted methodologies developed in traditional remote sensing 91 

methods (using satellite imagery) including the utilized VIs and bands. Nevertheless, the enormous 92 

increase of spatial resolution has opened new opportunities to use other bands and VIs, primarily 93 

focusing on the visible spectrum (Ballesteros et al. 2018). No reported studies have analyzed the use of 94 

VIs derived from the visible bands to predict water status, compared with the traditionally used 95 
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multispectral and thermal VIs. Nevertheless, in this study RGB VIs, in addition to multispectral VIs, 96 

were studied as predictors of grapevine water status due to lower cost of RGB cameras and easier 97 

photogrammetric treatment, compared with multispectral and thermal products. 98 

Green cover canopy (GCC) is a geometric parameter which provides information about 99 

vegetative growth level or canopy vigor. It can be determined from RGB imagery data and is usually 100 

related with the leaf area index (LAI), biomass, plant height, and canopy volume, among others 101 

(Ballesteros et al. 2015, 2018). Nevertheless, to the best of our knowledge, it has not yet been shown to 102 

be related to vine water status. In this study, we evaluate the relationship between GCC and grapevine 103 

water status measurements. The objective of this study was to analyze the use of multispectral and RGB 104 

VIs and GCC to characterize spatial and temporal variations vineyard water status as a first step of 105 

future models that will be developed to estimate vineyard water status according of its location and 106 

variety, among others. High frequency multispectral and RGB imaging at high spatial resolution was 107 

used to determine VIs as potential predictors of vine water status. The proposed methodology is 108 

complementary to field determinations with pressure chamber measurements. In order to obtain a wide 109 

range of vine water status conditions, several irrigation regimes were tested including different water 110 

salinity levels in order to better taken into account different potential sources of variations for vine water 111 

status. 112 

Materials and Methods 113 

Site location and experimental design. The research was undertaken during the 2018 and 2019 114 

growing seasons in a commercial vineyard located in Fuente-Álamo, Albacete, Spain (38º 43’ 43.3’’N, 115 

1º 28’ 12.6’’W; elevation 820 m a.s.l.; see Fig. 1). The soil was sandy loam (55.64% sand, 27.73% silt, 116 

and 16.63% clay) with variable depth from 35 to 50 cm. It had 1.2% organic matter, 47.7% active 117 
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CaCO3, electrical conductivity (EC) of 0.39 dS/m, pH of 8.86, and bulk density of 1.17 g/cm3. The 118 

irrigation water analysis showed an EC of 1.26 dS/m and pH of 8.37. 119 

The climate was defined as continental Mediterranean (“Climate zones. National Geographic 120 

Institute (NGI)” 2020), with hot and dry summers and daily maximum summer temperatures close to 40 121 

°C, mainly in July and August. The weather station was located 10 km from the experimental plot. 122 

Annual rainfall at the experimental site was 406 mm in 2018 and 550 mm in 2019, while rainfall from 123 

April to September was 230 mm and 400 mm, respectively. The total annual reference 124 

evapotranspiration (ETo) was 1171 mm in 2018 and 1270 mm in 2019, while ETo for the growing season 125 

was 834 mm and 879 mm, respectively. Growing degree days (GDD) from April to harvest was 126 

computed as the sum of the average daily temperature above a threshold of 10 °C (Amerine and Winkler 127 

1944). GDD at the harvest was 1904 up to 10th October 2018 and 1868 up to 7th October 2019. 128 

The study was performed in a 0.6 ha subplot of a 6.5 ha commercial vineyard. The vines, planted 129 

in 2007, were cv. Monastrell on 110R rootstock. They were planted in north–south oriented rows and 130 

trained to a double Guyot system on a vertical trellis. The row x vine spacing was 3 m x 1.5 m (2,222 131 

vines/ha). Two 2-bud spurs and two 60–90 cm canes were retained during pruning each year. In July, 132 

green shoots were trimmed from each grapevine, according to local growing practice. The plot was 133 

irrigated with self-compensating dippers spaced by 1 m, with a dripper discharge of 4 l/h.  134 

Due to water restrictions under a pressing water scarcity scenario, the annual available water to 135 

irrigate was set as 1000 m3/ha by the water managers in the study area. Six treatments (T1-T6) and four 136 

replicates for every treatment were considered as experimental design. Every treatment and replicate 137 

were randomly placed along the experimental area (Fig. 1).  138 
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Each replicate involved four rows with 10 vines. The two outer rows were considered as buffers. 139 

Also, the most external vines of every row were considered as buffers. The characteristics of different 140 

treatments were the following: T1 was rain-fed, T2 was irrigated with standard-quality water, T3 was 141 

irrigated adding sulphates (Na2SO4 and MgSO4), T4 was irrigated adding sodium chloride (NaCl), and 142 

T5 and T6 were irrigated adding sulphates and NaCl respectively, but irrigation events started at 143 

veraison. Salts were added to T3, T4, T5, and T6 up to irrigation water reaching an EC of 5 dS/m. 144 

Irrigation in T2, T3, and T4 began when Ψstem reached -0.8 MPa. In 2019 season, the experimental 145 

design was simplified, as T5 and T6 were not applied because agronomic and grape quality differences 146 

with the others salted treatments (T3 and T4) were not observed. Since the aim of the present study is to 147 

correlate different grapevine water status determinations, the fact that T5 and T6 were not used for the 148 

2019 data analysis does not affect the robustness of our results.  149 

Grapevine water status measurement. Grapevine water status was assessed by midday Ψstem 150 

six times in 2018 and seven times in 2019 (Table 1) on two leaves (one leaf per vine) per replicate plot 151 

with a pressure chamber (Model 600, PMS Instrument Company, Albany, OR, USA). Previous 152 

observations showed that the variation in Ψstem among leaves of the same grapevines was very low 153 

(coefficient of variation lower than 5 %). Therefore, increasing the number of vine measurements 154 

instead of increasing the number of Ψstem determination per vine was performed, as measurements have 155 

to be carried out within one hour (Intrigliolo and Castel 2010). Field determinations for Ψstem were 156 

carried out on the same days that aerial images were collected (Table 1), and measurements were always 157 

carried out on the same selected vines. Indeed, considering the wide range of irrigation treatments 158 

explored, vine water status was assessed in a total of 48 and 32 vines, in 2018 and 2019, respectively.  159 
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Ψstem characterizes the grapevine water status at the moment of determination, however, the 160 

spectral response of leaves shows the accumulated effect of water deficit duration and intensity from the 161 

beginning of the cycle to the moment of determination, represented by water stress integral (Sψ), 162 

computed as the sum of vine water potential measurements during the study period (Buesa et al. 2017). 163 

It was calculated, as in equation (1), as the summation of the difference of average of two consecutive 164 

measurements of Ψstem ( ) and the least negative value registered during the season (c = -0.35 MPa in 165 

both seasons), multiplying it by the number of days between one measurement and the next (n). The 166 

possible limitations of the Sψ may occur when the number of days between two consecutive readings is 167 

high. It might have sudden and punctual changes in the water status that may not be noticed, but the 168 

water stress integral is the result of the crop water “history”, as well as the canopy spectral response. It 169 

represents the accumulated water status of the vineyard from the beginning of the cycle until the 170 

measurement is taken. Therefore, the main objective of this manuscript is to relate the canopy spectral 171 

response with the Sψ. 172 

          

Sφ = ⃒��ψi,i+1 − c� n⃒
i=t

i=0

  

        (1) 173 

Aerial imagery acquisition and processing. High-resolution multispectral (8 cm ground sample 174 

distance; GSD) and RGB (2 cm GSD) images were collected on the same days that Ψstem was 175 

determined (Table 1). The UAV used was a quadcopter md4-1000 (Microdrones Inc., Kreuztal, 176 

Germany) mounted with a multispectral SEQUOIA sensor (Parrot, Paris, France) and an RGB SONY 177 

ILCE-5100 digital camera (Sony Corporation, Tokyo, Japan). The multispectral SEQUOIA sensor 178 

measured four bands: green (550 nm with a 40 nm bandpass filter; BPF), red (660 nm, BPF 40 nm), red-179 
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edge (735 nm, BPF 10 nm), and NIR (790 nm, BPF 40 nm). The sensor has a 4.8 x 3.6 mm charge 180 

coupled device (CCD) and a pixel size of 3.75 x 3.75 μm. The resolution of the image was 1280 x 960 181 

(columns and rows, respectively) with a focal length of 3.98 mm. The sensor of the SONY ILCE-5100 182 

camera was a complementary metal oxide semiconductor (CMOS) Exmor® type APS-C (23.5 x 15.6 183 

mm) with pixel size of 4 x 4 μm. The image size was 6000 x 4000 (columns and rows) and its focal 184 

length was 20 mm. Flights were always performed near solar noon at a height of 80 m above ground. 185 

Eight targets were uniformly distributed within the flying area for geo-referencing and sensor geometric 186 

calibration. The positions of the target centroids were determined using the Leica Global Positioning 187 

System (GPS) 1200 (Leica Geosystems AG, Heerbrugg, Switzerland) linked to a Global Navigation 188 

Satellite System (GNSS) permanent reference station. The estimated accuracy of the global navigation 189 

satellite system real-time kinematic (GNSS-RTK) was 0.01 m in planimetry and 0.015 m in altimetry.  190 

Images were automatically acquired following a flight plan computed using the Microdrones 191 

Photogrammetric Flight Planning software (MFLIP) (Hernandez-lopez et al. 2013). Before each flight, 192 

radiometric calibration was performed using the Aircalib calibration panel (Airinov, Paris, France) for 193 

the multispectral sensor. Blurred images were automatically detected and eliminated (Ribeiro-Gomes et 194 

al. 2016). Geomatic products (i.e., orthoimage, digital surface model (DSM), and point cloud) were 195 

obtained using the Agisoft Metashape Professional version 1.6.1 software (Agisoft LLC, St. Petersburg, 196 

Russia). 197 

Segmentation of well-illuminated vegetation in the orthoimages was performed using a modified 198 

version of the LAIC (leaf area index calculation) computer vision software (Córcoles et al. 2013), 199 

named GEO-LAIC for RGB imagery treatment and MS-GEO-LAIC for multispectral imagery. This 200 

software also made it possible to determine the GCC (Fig. 2). The GCC was computed for each vine 201 
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according to the methodology proposed by Ballesteros et al. (2014). The software used for the extraction 202 

of geomatic information for each vine was QGis version 3.4.1 software (QGIS Development Team, 203 

2019, QGIS Geographic Information System. Open Source Geospatial Foundation Project. 204 

https://qgis.org). 205 

Calculation of VIs. Sensitiveness of salts treatments on canopy spectral reflectance was 206 

previously assessed. There were no significant differences for any seasons and sampling events. 207 

Therefore, relationships between water stress integral and considered VIs were studied for all treatments 208 

together.  209 

Different VIs were calculated from visible and NIR spectra measured in the RGB and 210 

multispectral orthoimages with segmented vegetation. The high resolution images allowed for 211 

calculation of a VI for each vine. Band values were computed as the mean of pixel values within its 212 

delimited vegetation area with QGis version 3.4.1 software (QGIS Development Team, 2019, QGIS 213 

Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.org). 214 

Nevertheless, the average of grapevines bands within its replicate plot was band value of each replicate 215 

plot of the study, because in the data analysis of this study were used average values for each replicate 216 

plot not at the grapevine level. 217 

Statistical analysis. Pearson’s correlation coefficient (r) was calculated for the multispectral and 218 

RGB VIs listed in Tables 2 and 3. VIs that were highly correlated (r ≥ 0.95) were not considered. 219 

Pearson’s correlation analysis was determined between the different VIs and GCC (as predictors) and 220 

Sψ, throughout the entire growth cycle for the 2018 and 2019 seasons. Simple linear regression models 221 

were assessed using as predictors multispectral and RGB VIs with r values of >0.5 in the last dates for 222 

2018 and 2019. The coefficient of determination (R2) and the relative error (RE) were used to assess the 223 

https://qgis.org/
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performance of the obtained models for each irrigation season. The regression trend line between 224 

measured Sψ and simulated Sψ, using the VI with the best performance as predictor, was also shown to 225 

study the trend of the calibrated model to overestimate or underestimate Sψ values. Validation was 226 

performed in the 2019 data to test the obtained models in 2018; for this, R2, RE and regression line 227 

between measured Sψ and simulated Sψ were used to assess the performance.  228 

Results 229 

Accumulated water stress obtained under different treatments. Analyzing the computed Sψ 230 

for each sampling date in the 2018 season (Fig. 3), differences between treatments were not significant 231 

until 14th August, even though the first irrigation event was on 2nd July for treatments T2–T4. 232 

Differences between T1 (rain-fed grapevines) and the rest of treatments were significant on 14th August 233 

(at the beginning of veraison), at 1282 GDD and when the total applied water was 291 mm from rainfall 234 

and 55 mm from irrigation. As expected, for that date, T1 showed the highest water stress, with an 235 

average Sψ of 28.9 MPa*days. The lowest Sψ average value was 19 MPa*days for T2 (irrigated with 236 

standard-quality water). The rest of the treatments showed mean values close to 23 MPa*days, in the 237 

case of T3 and T4 (irrigated with added sulphates and NaCl, respectively), and close to 26 MPa*days for 238 

T5 and T6 (irrigated with added sulphates and NaCl respectively, with watering starting at veraison). In 239 

addition, significant differences appeared between T2, T5, and T6, due to the later start of irrigation 240 

events. No differences were observed between T2, T3, and T4. Therefore, the results indicate that there 241 

were no differences resulting from the two salt types (i.e., T3 versus T4 and T5 versus T6). In the last 242 

two sampling dates, the treatments Sψ values had the same trend as on 14th August. Differences between 243 

T1 and the rest of the treatments were significant on 19th September (at berry ripening) at 1720 GDD 244 
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and when the total applied water reached 337 mm from precipitation and 99 mm from irrigation. T1 245 

showed the highest water stress, with an average Sψ of 64.3 MPa*days, while the lowest Sψ average 246 

value was 35.3 MPa*days for T2; the rest of treatments showed mean values close to 44 MPa*days for 247 

T3 and T4, and close to 50 MPa*days for T5 and T6. 248 

Analyzing the computed Sψ for each sampling date of the season 2019 (Fig. 4), differences 249 

between treatments were not significant until 29th July. In the previous sampling dates, the irrigation 250 

treatments had not started yet. Differences between T1 (rain-fed) and T2 (irrigated with standard-quality 251 

water) were observed on 29th July (at phenological phase of closed bunch), at 1043 GDD and when the 252 

cumulative irrigation water was 15 mm. For that day, T1 showed an average Sψ value of 12.3 MPa*days 253 

and T2 of 7.4 MPa*days. Differences between T1, T2, and T4 with average Sψ values of 21.9, 12.9, and 254 

18.9 MPa*days were detected, respectively, on 14th August (at veraison) at 1289 GDD and with total 255 

applied water of 240 mm from rainfall and 19 mm from irrigation. Differences between T1 and the other 256 

treatments were the most significant, with an average Sψ value of 35.5 MPa*days for T1 and lowest 257 

mean value of 19.1 MPa*days for T2 on 28th August (at beginning of berry ripening) at 1468 GDD and 258 

with total applied water of 259 mm from rainfall and 40 mm from irrigation. The same trend appeared in 259 

the last sampling date, with the highest average value for T1 (47.6 MPa*days) and the lowest mean 260 

value for T2 (23.6 MPa*days). Significant differences between T2, T3, and T4 (added salts) were not 261 

observed. Therefore, it was shown that irrigation with added salts did not influence the grapevine water 262 

status, as was previously observed in 2018.  263 

Correlation of the VIs and analysis of the VIs and GCC with Sψ. Analysis of Pearson’s 264 

correlation between the different multispectral VIs for 2018 and 2019 seasons showed that MCARI1, 265 

MCARI2, MSAVI, MTVI3, MSR, and SRI had correlation coefficients higher than 0.95, revealing a 266 
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high level of multicollinearity. Therefore, the multispectral VIs  considered were NDVI, GI, GNDVI, 267 

MCARI, RDVI, and TCARI/OSAVI.   268 

Analysis of Pearson’s correlation between the different RGB VIs for 2018 and 2019 seasons 269 

showed that γ, NGRDI, Ikaw, ExR, ExB, ExG, ExGR, and RGRI had correlation coefficients higher 270 

than 0.95, revealing a high level of multicollinearity. Therefore, the RGB VIs considered were ρ, β, GLI, 271 

and VARI. 272 

For selected VIs, Table 4 shows r values for the relationships between the most significant 273 

multispectral and RGB VIs (with r values > 0.5 in some dates) with Sψ in the 2018 season. Generally, r 274 

values were higher at the last sampling dates for both types of VIs. Moreover, r values were higher for 275 

RGB VIs. The GCC, which is considered a geometric parameter and not such as a spectral VI, showed a 276 

good relationship with grapevine water stress. Therefore, canopy growth or grapevine vigor is highly 277 

influenced by the accumulated water stress. After Pearson’s analysis, we studied simple linear 278 

regression models of the multispectral and RGB VIs with r values of >0.5 in the last three or two dates. 279 

In the case of multispectral VIs, we considered NDVI, GNDVI, and RDVI. For RGB VIs, we 280 

considered GLI, VARI, and the geometric parameter GCC. 281 

Table 5 shows the r values for the relationships between the most significant multispectral and 282 

RGB VIs (with r values > 0.5 in some dates) with Sψ in the 2019 season. Generally, r values were higher 283 

in the last sampling dates for both types of VI, as occurred in 2018. Nevertheless, some multispectral 284 

VIs only showed r values of >0.5 in the last sampling date (18th September 2019): NDVI, GNDVI, and 285 

TCARI/OSAVI. In the case of RGB VIs, as in 2018, GLI, VARI, and GCC had r values of >0.5 in the 286 

last three sampling dates (but lower than those in 2018); except for GCC, with a r value of 0.31 on 18th 287 

September. GLI also had r values of >0.5 on the 16th and 29th of July.  288 
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Simple linear regression analysis. In order to determine a model to predict grapevine water 289 

status, simple linear regression analysis between the multispectral VIs NDVI, GNDVI, and RDVI and 290 

the RGB VIs GLI, VARI, and GCC and Sψ was evaluated for each sampling date in 2018. Table 6 291 

shows the statistical analysis for obtained RGB linear models in the 2018 season. The statistical analysis 292 

of multispectral VIs predictors was not detailed as R2 values were lower than 0.5. Therefore, 293 

multispectral VIs offered weak results. According to the r values, the best fits were obtained in the last 294 

three sampling dates. The best fit considering RGB VIs as predictor variables was obtained for GLI (R2 295 

= 0.8 and RE = 8.75%) as a predictor for the last date, 23rd August, at veraison (at 1394 GDD) (Fig. 5a). 296 

Generated models using VARI as predictor also had good fits for the last two dates, with R2 > 0.5 and 297 

RE > 10%. The generated model including GCC as a predictor showed a good fit, with R2 > 0.5 and RE 298 

close to 10%, for the last three dates and with the best fits on 27th July and 14th August with R2 = 0.65 299 

and 0.67, and RE = 9.73 and 10.22%, respectively.  300 

In order to determine a model to predict grapevine water status, simple linear regression analysis 301 

between the multispectral VIs NDVI, GNDVI, and TCARI/OSAVI and the RGB VIs GLI, VARI, and 302 

GCC and Sψ was evaluated for each sampling date in 2019. Table 6 shows the statistical analysis for 303 

obtained RGB linear models in the 2019 season. Despite the last sampling date, in the case of NDVI and 304 

GNDVI, or the last two dates, in the case of TCARI/OSAVI, showing the best fits, neither had R2 > 0.5 305 

and, so, no multispectral model was significant to predict Sψ (as in 2018), hence the statistical analysis 306 

obtained using multispectral VIs as predictors are not shown. In the case of generated models with GCC 307 

as predictor, no date had R2 > 0.5. In the case of GLI, the model only showed R2 > 0.5 on 28th August at 308 

1468 GDD (at the beginning of berry ripening). For generated models using VARI as a predictor, only 309 

the last two dates had good fit (with R2 > 0.5). In this year, the models did not fit as well as in 2018. 310 
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Validation process. To evaluate the model generated in 2018, it was applied to the data obtained 311 

in 2019. The best linear regression model of the calibration process in 2018 was GLI, with the best 312 

statistics on 23rd August (1394 GDD), with R2 = 0.8 and RE = 8.75%. To validate this model, the 313 

calibration equation between GLI and measured Sψ was applied to GLI on 28th August 2019 with 1468 314 

GDD, as it was similar in the GDD at 23rd August 2018. The resulting statistical values were R2 = 0.59 315 

and RE = 33.82%. The model underestimated the Sψ values when higher Sψ values were reached (Fig. 316 

5b). No multispectral models were validated, as their results were not robust (R2 < 0.5). 317 

Discussion 318 

In both years, differences between the treatments were not clearly observed until mid-August—319 

around veraison—and were mostly found between irrigation regimes, while the application of salt water 320 

did not clearly affect grapevine water status. This confirms that the Ψstem measurement is a good 321 

indicator for the watering regime imposed, as recently analyzed in a meta-analysis study (Santesteban et 322 

al. 2019). On the other hand, the application of salt water did not affect plant water status, probably as 323 

the vineyard’s sandy soil avoided the important accumulation of salts in the root-zone. The leaf spectral 324 

response was also not affected by the water salinity levels. Thus, data from the different combinations of 325 

watering and salinity levels were pooled together when relating vine water status with spectral indexes 326 

calculated. Studies determining salinity effects on leaf spectral indexes are still scarce and only recently 327 

in citrus trees found that only after 8 seasons of continuous application of salty water from treated waste 328 

water it could be detected a differential response in canopy multispectral response (Romero-Trigueros et 329 

al. 2017). Comparing the two seasons, the Sψ values were lower in 2019 than in 2018, due to the lowest 330 

Ψstem values computed in last three sampling dates of 2019. In those dates, irrigation and rainfall events 331 
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were less frequent but with more intensity, highlighting more than 35 mm from rainfall and irrigation 332 

registered in previous days to 28th August or more than 100 mm from rainfall in previous days to 18th 333 

September. A possible reason that the strongest relationships between water stress and the multispectral 334 

and RGB IVs occurred on the last measurement dates is that Sψ considers accumulated water stress 335 

throughout the growing cycle, which probably affected the structural and pigment content of the leaves 336 

and, therefore, the spectral response; that is, the source of VIs.  337 

In this study, multispectral and RGB VIs were considered as predictors of Sψ. The VIs having the 338 

strongest relationship with Sψ were NDVI, GNDVI, RDVI, TCARI/OSAVI, GLI, VARI, and the 339 

geometric parameter GCC, where the best results were obtained in the visible domain (i.e., with GLI, 340 

VARI, and GCC), with the GLI performance at the last sampling date of 2018 being notable. Few 341 

authors have used RGB VIs to predict water status (Möller et al. 2007, Rodríguez-Pérez et al. 2007, 342 

Rossini et al. 2013, Zarco-Tejada et al. 2013, Pôças et al. 2015) as the visible part of the spectrum is 343 

characterized by low reflectance due to the strong absorption of foliar pigments. Möller et al. (2007) 344 

used thermal and visible images to develop models for estimating Ψstem. Nevertheless, RGB VIs were 345 

not computed and RGB imagery were used only as supporting data. Rodríguez-Pérez et al. (2007), 346 

Zarco-Tejada et al. (2013), and Rossini et al. (2013) used the photochemical reflectance index (PRI), 347 

suggesting its use as good indicator for water stress monitoring. In this study, PRI was not computed 348 

because it requires the 530 and 550 wavelengths of the visible region electromagnetic spectrum and the 349 

used RGB sensor only provides wavelengths corresponding to red (670 nm), green (550 nm) and blue 350 

(470 nm). Pôças et al. (2015) also used hyperspectral reflectance indices to predict vineyard Ψpd. Their 351 

study showed R2 values ranging from 0.37 to 0.58, having better fit when using VARI (R2 = 0.58). In 352 

this study, the best fit of VARI was with 2018’s last sampling event for calibration (R2 = 0.72). 353 
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Several studies have used multispectral and thermal VIs to determine water status. Baluja et al. 354 

(2012) reported that the highest correlations were obtained for NDVI, MSR, SRI, GNDVI, and 355 

TCARI/OSAVI predictors, with R2 values ranging between 0.58 (GNDVI) and 0.68 (NDVI). In the 356 

present study, for both calibration years (2018 and 2019), R2 values using NDVI and GNDVI as 357 

predictors were less accurate (0.42 and 0.49, respectively) for the last sampling date of 2018 (19th 358 

September with 1720 GDD). In 2019, the R2 values of models generated using NDVI, GNDVI, and 359 

TCARI/OSAVI were 0.26, 0.41, and 0.46, respectively, for the last sampling date (18th September with 360 

1681 GDD). Poblete et al. (2017) obtained R2 values for NDVI and GNDVI of 0.35 and 0.31; lower than 361 

the obtained values in this study with the 2018 calibration. Romero et al. (2018) obtained R2 values for 362 

NDVI ranging between 0.12 and 0.29 for three sampling dates; lower values than those obtained in the 363 

2018 calibration in this study, and similar to the values obtained in the 2019 calibration. These 364 

multispectral VIs can only indirectly detect water status, as they were developed to represent different 365 

physiological variables that can change according to different levels of water status (Poblete et al. 2017). 366 

In this context, NDVI has been reported to be a good indicator of vegetative vigor, yield, and plant water 367 

status (Acevedo-Opazo et al. 2008a), while GNDVI has been reported as a better form to detect 368 

chlorophyll pigment concentration, which is modified under stress conditions (Gitelson and Merzlyak 369 

1998).  370 

In the studies carried out by Baluja et al. (2012), Poblete et al. (2017), and Romero et al. (2018), 371 

multispectral VIs were related with Ψstem values, which characterizes the grapevine water status at the 372 

moment of determination. Nevertheless, unlike the previous works, the computed VIs in this study were 373 

related to Sψ, which integrates the measured Ψstem at each sampling date to obtain an accumulated value 374 

of water stress, which reflects the effect of water deficit duration and intensity. In the case where 375 
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instantaneous water stress determination is required, thermal imagery is probably more appropriate; 376 

although the associated sensor cost and the difficulty of obtaining an accurate geomatic product 377 

increases the cost and decreases the applicability of the methodology (Ribeiro-Gomes et al. 2016). 378 

Nevertheless, using just RGB products can offer a good solution for determining accumulated water 379 

stress, which is a variable used in vineyard water management; particularly for characterizing vineyard 380 

zones which may have suffered from different degrees of water stress. Determination of the actual water 381 

status by determining Ψstem is more useful for irrigation scheduling and modulating the irrigation regime, 382 

according to the instantaneous water stress suffered by the grapevines. 383 

In the current study, we compared VIs computed from multispectral bands of the Parrot Sequoia 384 

and RGB bands from a conventional camera, the Sony ILCE 5100. RGB VIs integrating only 385 

information in the visible domain showed better correlations with Sψ. Moreover, the good performance 386 

of these visible VIs was due to the higher spatial resolution, which clearly compensates for the lower 387 

reflectance in the visible region, compared with that in NIR and red-edge. The green band is 388 

characterized by absorption of radiation by the anthocyanins, water-soluble pigments associated with the 389 

resistance of plants to stresses as water deficits (Viña and Gitelson 2011). Blue-band wavelengths refer 390 

to a strong absorption by carotenes and xanthophylls which, along with chlorophyll, are used as 391 

indicators of physiological states and plant adaptation to stress (Gitelson 2012). Thus, the capability of 392 

very-high resolution products in the visible region of the spectrum allows for generating accurate data 393 

from the green band, avoiding the need to use multispectral sensors. According to the above results, 394 

using RGB VIs to predict Sψ, instead of traditional multispectral VIs: 1) could reduce costs, as RGB 395 

cameras are much cheaper than multispectral ones; 2) could improve the generation of accurate 396 

orthoimages, as structure-from-motion software is designed to work with RGB images; 3) sun glint and 397 



 
American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2021.20063 

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  
or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 
 

19 
 

hotspot effects are less pronounced in RGB images than in multispectral ones, which decreases the 398 

limitation in the hours of operation (Ortega-Terol et al. 2017); and 4) the point cloud generated is much 399 

more accurate, making it possible to obtain the geometric characteristics of the plants, which can 400 

improve crop monitoring (Ballesteros et al. 2015). 401 

The GCC is considered to be a geometric parameter which provides information about vegetative 402 

growth level or canopy vigor. The GCC is usually related with biomass and plant height but, in this 403 

study, GCC was related to Sψ. Better results were obtained in 2018 than in 2019. 404 

The best-calibrated model, which used GLI and computed Sψ data for a date of 2018, was 405 

validated with GLI data from a date in 2019 with similar GDD. The weak performance of the model 406 

generated one year and applied to the next one suggests that it is necessary to make complementary use 407 

of field measurements with UAV flights every irrigation season. The implementation of the proposed 408 

methodology does not avoid using field measurements, such as pressure chamber measurements. 409 

However, it allows applying results obtained in just a few points of the plot to the whole plot. Since 410 

water potential determinations have to be carried out within a short time (i.e. one hour) to avoid the 411 

differential effects of varying environmental conditions during the day, the procedure here developed 412 

could be used to map the entire vineyard water status variability from a few on-the-ground point 413 

determinations. This is of particular interest for both, obtaining a more representative evaluation of the 414 

entire vineyard water status and to determine different zones within the vineyard. Nevertheless, 415 

obtaining aerial images from veraison to senesce may be enough to monitor differences in water status. 416 

All calibrated models for both seasons showed better performance in the last sampling dates, when the 417 

fruit development was at veraison and differences in water status were observed. This was more 418 

significative for GLI performance, as it has been previously mentioned, on 23rd August 2018 when 1394 419 
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GDD. However, field measurements are necessary to quantify it. It is important to highlight that 420 

monitoring water status depends on the rain regime, irrigation scheduling, and crop development, 421 

making it necessary to determine the most appropriate flight stating date for every individual case. 422 

Conclusion 423 

The use of RGB cameras onboard a UAV platform allowed us to obtain high spatial resolution 424 

images for the monitoring of grapevine water status with better results than when using (more complex) 425 

multispectral images. This, together with occasional pressure chamber measurements, permits the 426 

monitoring of water status throughout the whole vineyard. The use of conventional RGB cameras 427 

increases the applicability of the proposed methodology, due to the lower cost of the system and easier 428 

photogrammetric treatment, compared with multispectral and thermal products. Moreover, the results 429 

from 2018 showed that canopy growth (represented by GCC obtained from the RGB camera) also had a 430 

good correlation with grapevine water status; therefore, it can be used as predictor for the mid-term 431 

effects of water deficit. 432 

Because of the poor results obtained when applying a model calibrated for one year to another 433 

season, it can be concluded that it is necessary to generate a new empirical model for every season. 434 

Nevertheless, only flights close to veraison were necessary in the case study, reducing the number of 435 

required flights and, therefore, the cost of application. 436 

Future advances will be focused on implementing other statistical regression models, such as 437 

machine learning techniques, to enhance the obtained fits. Furthermore, more efforts will be made to 438 

predict the water status in a specific date of any year using a previous generalizable calibrated model by 439 

extending the number of analyzed seasons. 440 
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Table 1  Dates of Ψstem measurements and flights, calculated growing degree days (GDD), and accumulated 
applied water by rainfall and irrigation in the studied vineyard cv. Monastrell located in southeastern Spain 

in 2018 and 2019 seasons. 

 Sampling date DOY 
Growth stage 

(Baggiolini scalea) GDD 
Applied water (mm) 

Rainfall Irrigation 

Season 2018 15th June 166 H-I: flowering 396 264 0 

 2nd July 183 J: fruit set 614 288 4 

 27th July 208 L: closed bunch 989 288 44 

 14th August 226 
M: beginning 

veraison 1282 291 55 

 23rd August 235 M: veraison 1394 307 70 

 19th September 262 N: berry ripening 1720 337 99 

Season 2019 19th June 170 J: beginning fruit set 453 233 0 

 4th July 185 J: ended fruit set 665 233 0 

 16th July 197 K: berry pea size 849 240 0 

 29th July 210 L: closed bunch 1043 240 15 

 14th August 226 M: veraison 1289 240 19 

 28th August 240 
N: beginning berry 

ripening 1468 259 40 

 18th September 261 N: berry ripening 1681 428 56 

DOY: days over year; GDD: accumulated growing degree days 
aBaggiolini scale: (Baggiolini 1952) 

 



 
American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2021.20063 

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  
or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 
 

26 
 

 
Table 2  Multispectral VIs used in the present study calculated using the Parrot Sequoia sensor’s set of bands. 
These VIs were calculated for vineyard cv. Monastrell located in southeastern Spain in 2018 and 2019 seasons. 

 Index Equation References 

GI Greenness Index  
(Zarco-Tejada et al. 

2005) 

GNDVI Green Normalized Difference 
Vegetation Index  

(Gitelson and Merzlyak 
1998) 

MCARI Modified Chlorophyll Absorption in 
Reflectance Index  

(Daughtry et al. 2000) 

MCARI1 Modified Chlorophyll Absorption in 
Reflectance Index 1  (Haboudane et al. 2004) 

MCARI2 Modified Chlorophyll Absorption in 
Reflectance Index 2  

(Haboudane et al. 2004) 

MSAVI Improved Soil-Adjusted Vegetation 
Index  

(Qi et al. 1994) 

MSR Modified Simple Ratio 

 

(Chen 1996) 

MTVI3 Modified Triangular Vegetation Index  
(Rodríguez-Pérez et al. 

2007) 

NDVI Normalized Difference Vegetation 
Index  

(Rouse et al. 1974) 

TCARI/ 
OSAVI 

Transformed Chlorophyll Absorption 
in Reflectance Index/Optimized Soil-

Adjusted Vegetation Index  
(Haboudane et al. 2002) 

SRI Simple Ratio Index 
 

(Jordan 1969) 

RDVI Renormalized Difference Vegetation 
Index  

(Roujean and Breon 
1995) 
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Table 3  RGB VIs used in the present study calculated using the SONY-ILCE 5100 sensor’s set of bands. 
These VIs were calculated for vineyard cv. Monastrell located in southeastern Spain in 2018 and 2019 

seasons. 

 Index Equation References 

ρ Normalized red 
 

(Saberioon et al. 2014) 

γ Normalized green 
 

(Saberioon et al. 2014) 

β Normalized blue 
 

(Saberioon et al. 2014) 

NGRDI Normalized Green Red Difference Index 
 

(Gitelson et al. 2002) 

Ikaw Kawashima Index 
 

(Kawashima and Nakatani 1998) 

ExR Excess Red Vegetation Index  (Mao et al. 2003) 
ExB Excess Blue Vegetation Index  (Mao et al. 2003) 
ExG Excess Green Vegetation Index  (Mao et al. 2003) 
ExGR Excess Green minus Excess Red Index  (Mao et al. 2003) 

RGRI Red Green Ratio Index 
 

(Saberioon et al. 2014) 

GLI Green Leaf Index 
 

(Louhaichi et al. 2001) 

VARI Visible Atmospherically Resistance Index 
 

(Gitelson et al. 2002) 

 

 

Table 4  Pearson’s correlation coefficients for the relationships between the most 
significant VIs with Sψ (MPa*days) in the 2018 season for the studied vineyard 

cv. Monastrell located in southeastern Spain.  

 Multispectral VIs RGB VIs 

 NDVI GNDVI RDVI GLI VARI GCC 

15th June 2018 -0.06 -0.05 -0.26 0.19 0.07 -0.23 

2nd July 2018    -0.19 -0.16 -0.43 

27th July 2018 -0.27 -0.26 -0.17 -0.32 -0.56 -0.81 

14th August 2018 -0.62 -0.66 -0.67 -0.70 -0.75 -0.82 

23rd August 2018 -0.65 -0.67 -0.66 -0.89 -0.85 -0.85 

19th September 2018 -0.64 -0.7 -0.59    

 

 



 
American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2021.20063 

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  
or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 
 

28 
 

Table 5  Pearson’s correlation coefficients for the relationships between the most 
significant VIs with Sψ (MPa*days) in the 2019 season for the studied vineyard cv. 

Monastrell located in southeastern Spain. 

 Multispectral VIs RGB VIs 

 NDVI GNDVI TCARI/OSAVI GLI VARI GCC 

19th June 2019 1.2e-3 0.11 0.09 -0.24 -0.22 0.08 

4th July 2019 -0.28 -0.01 0.11 -0.41 -0.35 -0.37 

16th July 2019 -0.37 -0.3 0.35 -0.53 -0.39 -0.4 

29th July 2019 -0.32 -0.26 0.32 -0.58 -0.38 -0.34 

14th August 2019 -0.44 -0.34 0.35 -0.5 -0.67 -0.53 

28th August 2019 -0.35 -0.4 0.63 -0.77 -0.75 -0.57 

18th September 2019 -0.51 -0.64 0.68 -0.48 -0.73 -0.31 

 

Table 6  Statistics of generated simple linear regression models using the most significant RGB VIs* as predictors in 
the 2018 and 2019 seasons for the studied vineyard cv. Monastrell located in southeastern Spain. 

RGB VIs and GCC 

in 2018 season 

GLI VARI GCC 

R2 
RE 

(%) 
a b R2 

RE 

(%) 
a b R2 

RE 

(%) 
a b 

15th June 2018 0.04 9.14 0.83 0.34 3.5e-3 9.29 0.27 0.42 0.05 9.06 -5.9e-3 0.48 

2nd July 2018 0.04 15.27 -9.25 6.62 0.03 15.35 -5.1 5.55 0.18 14.06 -0.11 6.57 

27th July 2018 0.11 15.65 -83 23.9 0.32 13.66 -115 24.56 0.65 9.73 -0.74 22.68 

14th August 2018 0.48 12.79 -273.75 49.94 0.56 11.78 -209.08 37.05 0.67 10.22 -1.49 45.06 

23rd August 2018 0.8 8.75 -479.01 74.42 0.72 10.35 -346.75 46.1 0.73 10.19 -1.78 57.81 

RGB VIs and GCC 

in 2019 season 

GLI VARI GCC 

R2 
RE 

(%) 
a b R2 

RE 

(%) 
a b R2 

RE 

(%) 
a b 

19th June 2019 0.06 26.67 -4.81 1.04 0.05 26.74 -3.03 0.64 6.7e-3 27.37 6.8e-3 0.43 

4th July 2019 0.17 40.03 -57.03 12.02 0.13 41 -47.81 7.69 0.13 40.75 -0.17 5.45 

16th July 2019 0.29 28.76 -116.12 21.01 0.15 31.43 -46.51 10.17 0.16 31.31 -0.32 10.2 

29th July 2019 0.32 24.38 -252.7 37.58 0.15 27.33 -84.73 15.48 0.11 27.87 -0.39 15.26 

14th August 2019 0.25 22.85 -433.9 52.23 0.46 19.43 -297.98 27.67 0.28 22.41 -0.79 30.71 

28th August 2019 0.59 18.32 -590.43 94.73 0.55 19.24 -434.1 47.11 0.33 23.53 -2.52 53.22 

18th September 2019 0.23 28.88 -505.38 81.4 0.55 22.02 -986.13 49.9 0.09 31.22 -1.36 47.96 

R2: coefficient of determination; RE: relative error; a and b: coefficients of the generated model’s equation (Sψ = ax + b) 
*: statistics of generated simple linear regression models using multispectral VIs as predictors are not shown because 
all analyzed models including multispectral VIs as predictor reached R2 values of <0.5. Therefore, multispectral VIs 
offered weak results in 2018 and 2019. 
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Figure 1  Location of the commercial vineyard cv. Monastrell in southeastern Spain, and replicate plot field distribution 
where the study was performed during 2018 and 2019 seasons. Each coloured dot corresponds to a grapevine plant. 

 
 
 

 
 

Figure 2  Three resulting images from well-illuminated vegetation segmentation with MS-GEO-LAIC, used for segmenting 
multispectral images: (A) the selected portion of the image; (B) the values of the pixels corresponding with the selected 
clusters; and (C) the values of the pixels corresponding to the unselected clusters. 

 

(a) (b) (c) 
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Figure 3  Water stress integral (MPa*days) of studied vineyard for different treatments of experimental design at different 
sampling dates in 2018 season. 

 
 

 
Figure 4  Water stress integral (MPa*days) of studied vineyard for different treatments of experimental design at different 
sampling dates in 2019 season. 
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a)  b)  
 
Figure 5  Regression line of: (A) measured Sψ and simulated Sψ with the calibrated model that used as predictor GLI data 
for 23rd August 2018 with 1,394 GDD, and (B) the validation process using the equation of the calibrated model with GLI 
data of  28th August 2019 with 1,468 GDD, similar to the calibrated model (1,394 GDD). 

 
 
 


