AJEV Papers in Press. Published online November 7, 2022.

AJEV PAPERS IN PRESS • AJEV PAPERS IN PRESS

1	Research Article
2	Preventing Trunk Diseases with Fungicide Applications to
3	Pruning Wounds in Washington Wine Grapes
4	Truning would in washington white Grupes
5	Kendra Baumgartner, ¹ * Renaud Travadon, ² Phillip T. Fujiyoshi, ¹
6	Maria Mireles, ³ and Michelle Moyer ³
7 8	¹ United States Department of Agriculture - Agricultural Research Service, Davis, California USA 95616;
8 9	² Department of Plant Pathology, University of California, One Shields Avenue, Davis, California, USA
10	95616; ³ Washington State University, Irrigated Agriculture Research and Extension Center, Prosser,
11	Washington USA 99350.
12 13	*Corresponding author (Kendra.Baumgartner@usda.gov; tel: 530-754-7461; fax: 530-754-7195
14	
15	Acknowledgments: This research was funded by grant 17-0728-001-SF to K. Baumgartner, R. Travadon,
16	and M. Moyer from the USDA Multi-State Program, and was partially supported by the USDA, National
17 18	Institute of Food and Agriculture's Hatch project #1016563. For processing samples in the lab, we thank Paula Eschen and Alejandro Hernandez. Mention of trade names or commercial products is solely for the
19	purpose of providing specific information and does not imply recommendation or endorsement by the
20	USDA. USDA is an equal opportunity provider and employer.
21	
22	Manuscript submitted Mar 31, 2021, revised Aug 25, 2022 and Sep 9, 2022, accepted Sep 20, 2022
23 24	This is an open access article distributed under the CC BY license
2 4 25	(https://creativecommons.org/licenses/by/4.0/).
26	
27	By downloading and/or receiving this article, you agree to the Disclaimer of Warranties and Liability.
28	The full statement of the Disclaimers is available at http://www.ajevonline.org/content/proprietary rights-
29 30	notice-ajev-online. If you do not agree to the Disclaimers, do not download and/or accept this article.
31	Key words: Eutypa, fungi, trunk disease, Vitis vinifera.
32	Rey () of us . <i>Daugpu</i> , fungi, traine disease, <i>f uis fingeru</i> .
33	Abstract
55	
34	Background and Goals: Grapevine trunk diseases in the Columbia River Basin of eastern
35	Washington include Cytospora dieback, Eutypa dieback, and Esca. Although some of the causal
36	fungi are known (as Cytospora viticola, Eutypa lata, and Phaeomoniella chlamydospora,
37	respectively), basic epidemiology is not. This makes it difficult to time management practices.
38	The common assumption is that these pathogens infect through pruning wounds during the

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

39	dormant season, as has been shown for causal fungi of some grapevine trunk diseases in
40	California. As such, we evaluated fungicides for protecting wounds after pruning under eastern
41	Washington conditions.
42	Methods and Key Findings: In March of 2019, 2020, and 2021, we evaluated the protection
43	efficacy of pyraclostrobin + fluxapyroxad and thiophanate-methyl sprayed within 3 days of
44	pruning, at an established Vitis vinifera 'Chardonnay' vineyard in Prosser, WA. Within 2 days
45	of fungicide treatment, C. viticola, E. lata, or P. chlamydospora (2,000 spores per wound) were
46	inoculated separately onto spurs, and molecular-detection attempts were made 5 to 8 weeks later
47	(after budbreak). Compared to water-treated spurs, detection rates of C. viticola and P.
48	chlamydospora from thiophanate-methyl-treated spurs were lower in all three study years.
49	Detection rates of E. lata from thiophanate-methyl-treated spurs were lower in one year.
50	Conclusions and Significance: This suggests that dormant-season spray applications of
51	thiophanate-methyl as a pruning-wound protectant can reduce grapevine spur infection by these
52	pathogens. Little-to-no rain during the dormant season in eastern Washington may limit
53	opportunities for disease spread, but winter injury to the permanent, woody structure of the vine
54	may create additional infection courts.
55	Introduction
56	Grapevine trunk diseases impact vineyards worldwide. The fungal pathogens cause
57	chronic infections in the permanent, woody structure of the vine. They can kill fruiting shoots,
58	as is the case with the dieback-type trunk diseases (Gubler et al. 2013), or prevent fruit ripening,

59 a symptom of Esca (Gramaje et al. 2018). Eradicating the causal pathogens from a vineyard is

60 possible if done early in the infection process. A practice known as 'trunk renewal' or 'vine

61	surgery' (Calzarano et al. 2004, Sosnowski et al. 2011) involves removing the entire vine canopy
62	(typically the cordons and often including the trunk, and the fungal infections that go along with
63	it) and retraining the vine from a presumably healthy base of the trunk. This is a labor-intensive
64	and thus expensive approach, which takes a vine out of production for 2 years, while a new trunk
65	and canopy are being retrained (Baumgartner et al. 2019). A more cost-effective approach to
66	managing trunk diseases in the long term is to prevent the infections from happening in the first
67	place (Kaplan et al. 2016). This can be done through annual practices that minimize the risk of
68	pruning-wound infection, namely delayed pruning (Úrbez-Torres and Gubler 2011), double
69	pruning (Weber et al. 2007), or applications of fungicides and other protectants to pruning
70	wounds (Rolshausen and Gubler 2005, Rolshausen et al. 2010, Brown et al. 2021).
71	While nursery stock can potentially be infected at the time of planting (Gramaje and
72	Armengol 2011), the causal pathogens can also originate outside of a newly planted vineyard in
73	the form of airborne spores, released after rain events or prolonged periods of high relative
74	humidity [e.g., spores of the Eutypa-dieback pathogen Eutypa lata (Carter 1991), and the Esca
75	pathogens Phaeoacremonium minimum (Rooney-Latham et al. 2005) and Phaeomoniella
76	chlamydospora (González-Domínguez et al. 2020)]. The time it takes for one of these pathogens
77	to complete its life cycle (from spore interception on a pruning wound, to spore germination, to
78	host infection, to establishment of an internal wood infection, and finally to subsequent spore
79	production on the infected host) can range from one year [e.g., Phomopsis-dieback pathogen
80	Diaporthe ampelina (Anco et al. 2012)] to several years [e.g., E. lata (Ramos et al. 1975)].
81	In growing regions with a Mediterranean climate, these spores are thought to spread
82	primarily during the dormant season, given that most rain falls during this period. Spore-

83	trapping experiments show a trend of numerous spore-dispersal events by a broad range of
84	pathogenic species with rain throughout the entire dormant season [e.g., northern California
85	(Úrbez-Torres et al. 2010, Fujiyoshi et al. 2021b), eastern and northern Spain (González-
86	Domínguez et al. 2020), western Cape province of South Africa (van Niekerk et al. 2010)]. Also
87	in the dormant season of Mediterranean climates, the risk of vine infection is thought to be high,
88	as the dormant-season practice of pruning creates wounds, which are susceptible infection courts
89	for many of the causal fungi [e.g., E. lata (Petzoldt et al. 1981, Weber et al. 2007) and
90	Botryosphaeria-dieback pathogen Neofusicoccum parvum (Úrbez-Torres and Gubler 2011)]. In
91	western North America, most field trials of preventative pruning [e.g., delayed pruning (Úrbez-
92	Torres and Gubler 2011)] or applications of fungicides after pruning [e.g., thiophanate methyl
93	and pyroclostrobin (Brown et al. 2021)] have been done in California. However, studies on
94	spore dispersal and pruning-wound susceptibility from regions where the rainy season is not
95	synchronous with the timing of dormant-season pruning suggest that spores are produced and
96	dispersed over a longer period of time. For example, spores of Botryosphaeria-dieback
97	pathogens are trapped year-round in the maritime climate of New Zealand (Amponsah et al.
98	2009) and spores of <i>Eutypella</i> species (fungi in the same fungal family, Diatrypaceae, as <i>E. lata</i>)
99	are trapped year-round in the desert climate of southern California (Úrbez-Torres et al. 2020).
100	Without knowing which vine tissues are susceptible, when such tissues are at highest risk for
101	infection in these climates, or if the trapped spores are actually infectious to such tissues, it is
102	difficult to adapt the timing of practices originally developed for Mediterranean climates.
103	In a previous survey of Washington vineyards with trunk diseases, we identified Esca and
104	Eutypa dieback (Travadon et al. 2022 In Press). A unique finding of that survey was the

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

105	prevalence of the trunk disease Cytospora dieback and its causal pathogen Cytospora viticola,
106	which was originally described as a new species from vineyards in the northeastern US and
107	southeastern Canada (Lawrence et al. 2017) and has since been reported from vineyards in the
108	northern midwestern US (Dekrey et al. 2022). Eastern Washington is the second largest US
109	producer of wine grapes and the largest producer of juice grapes (USDA National Agricultural
110	Statistics Service 2018). The climate characteristics of this semi-arid steppe region are much
111	colder and drier than that of the major grape-growing areas in California, especially during the
112	dormant season. While the dormant season is when the predominate of this region's 200 to 500
113	mm of annual precipitation falls, it often falls as snow (non-liquid form) and is accompanied by
114	prolonged periods of freezing temperatures. Further, cold damage to vines during the dormant
115	season can result in entire vineyards needing to be retrained from the base of the trunk, every 10
116	to 20 years.

117 Our goal is to identify effective protectants as fungicide applications against pathogens 118 we identified in eastern Washington: Cytospora viticola (Cytospora dieback), Eutypa lata 119 (Eutypa dieback), and Phaeomoniella chlamydospora (Esca) (Travadon et al. 2022 In Press). No 120 studies to date (to our knowledge) have tested fungicides against trunk diseases in Washington. As such, we evaluated fungicides previously shown to be effective against at least one of the 121 122 pathogens. Without knowing the exact timing of pruning-wound susceptibility or spore dispersal 123 in the cold, dry winter of the lower Columbia Basin of eastern Washington, we carried out the experimental steps based on the timing of dormant-season pruning. 124

125

126	Materials and Methods
127	Study vineyard in eastern Washington. A replicated field trial was conducted for three
128	years, from 2019 to 2021, in an experimental vineyard in Prosser, Washington USA (Washington
129	State University, Irrigated Agriculture Research and Extension Center). The vineyard was
130	planted in 2011 with V. vinifera 'Chardonnay' on its own roots. Planting materials were certified
131	at the time of planting by the Washington State Department of Agriculture
132	(https://agr.wa.gov/departments/plant-health). Spacing is 3 m between rows and 1.5 m between
133	vines, at a density of approximately 1,749 vines/hectare (726 vines/acre). Vines are trained to a
134	dual-trunk bilateral cordon, spur pruned, and the canopy trained to a modified vertical-shoot
135	positioned system. The vineyard is drip-irrigated, and the irrigation season runs from
136	approximately April to October (per Sunnyside Valley Irrigation District allocations).
137	Prosser is located within the Yakima Valley American Viticultural Area of eastern
138	Washington. The climate is a semi-arid steppe, characterized by hot, dry summers, and cold
139	winters (USDA Cold Hardiness Zone 7a; https://planthardiness.ars.usda.gov/). The majority of
140	the average 203 mm of annual precipitation falls between November and March. Weather data
141	for this study (Figure 1) were recorded at an AgWeatherNet station (weather.wsu.edu;
142	"Prosser.NE), located approximately 500 m from the vineyard location.
143	Our experimental approach (Table 1) included the following steps: 1) prune all vines in
144	data rows and buffer rows to spurs of 40 cm length; 2) apply fungicide treatments to data vines
145	within 3 days after pruning; 3) carry out inoculation treatments of spurs on data vines within 2
146	days of fungicide treatments; and 4) collect spurs that received the inoculation treatments for
147	pathogen detection, when shoots growing from those spurs were approximately 20-cm long.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Pruning cuts were made horizontally, to prevent the droplet of inoculum from running off. The 148 149 relatively long length of the retained spurs (40 cm) after pruning was intentional to create enough 150 space to minimize the risk of infection progressing to the cordon from the pruning wounds, which are inoculated; it allowed us to remove inoculated tissue while still being able to leave 151 sufficient segments of canes to allow normal canopy growth and development during the 152 growing season. Also, the fungicide applications are more efficient and thorough when all the 153 154 pruning wounds are at the same height in the canopy. The short incubation period between steps 155 3 and 4 (ranging from 39 to 56 days; Table 1) was also necessary to minimize the risk of disease 156 spread from the inoculated spurs to the rest of the vineyard, which does not have a history of trunk diseases. 157

158 Fungicides applied after pruning. Fungicide treatments were as follows: a water-treated 159 control, pyraclostrobin + fluxapyroxad [Merivon Xemium, BASF, EPA 7969-310; Fungicide 160 (FRAC) groups Quinone outside inhibitor (QoI) + succinate-dehydrogenase inhibitor (SDHI)], 161 and thiophanate-methyl [Topsin M, United Phosphorus, Inc., EPA CA-030001; FRAC group 162 methyl benzimidazole carbamate (MBC)]. Treatments were applied to pruning wounds at a spray volume equivalent of 935 L/ha, using a backpack sprayer (Solo Model 425, Newport 163 News, VA, USA) with an air induction spray nozzle (TeeJet AITXA 8002). The application rate 164 of pyraclostrobin + fluxopyroxad (0.42 mL formulated product/L or 1.5 lbs per 100 gal) was the 165 166 maximum allowable rate on the manufacturer's label. The application rate of thiophanatemethyl (1.8 g formulated product/L or 5.5 fl oz per 100 gal) was recommended by the 167 manufacturer for management of trunk diseases. During application, the spray nozzle was 168 directed at each and every pruning wound and applied to run-off. Thorough coverage of spray 169

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

170	applications was confirmed as 100% each year, using two, 2 cm ² pieces of water- and oil-
171	sensitive paper (TeeJet, Wheaton, IL) attached to the pruned spurs on one data vine per treatment
172	per block.
173	Fungicide treatments (including the water-treated control) were applied in a randomized
174	complete block design (RCBD) with three blocks, each of which consisted of one treated row
175	separated by five buffer rows. Within each treated row (i.e., block), fungicide treatments (water-
176	treated control, pyraclostrobin + fluxapyroxad, thiophanate-methyl) were distributed among
177	eight-vine sets, and these fungicide treatments were randomized within the three blocks. For
178	each eight-vine set, all eight vines were treated on both sides of the row, but the spurs did not
179	receive inoculation treatments on the exterior cordons of vine 1 or vine 8 (i.e., 0.5 vine on either
180	end of the eight-vine set was treated, but not subject to pathogen inoculation). On the remaining
181	14 cordon lengths (the total of 14 comes from the fact that there were two cordons per each of
182	the eight vines, less the exterior cordons on both ends of the treated area), spurs of the central
183	three vines (data vines) were randomly flagged for inoculation treatment, with five spurs per
184	inoculation treatment per data vine (including the water-treated control). This gave a total of 540
185	spurs per year (3 blocks x 3 fungicide treatments x 4 inoculation treatments x 3 data vines per
186	fungicide treatment x 5 spurs per inoculation treatment per data vine). The same eight-vine sets
187	within the three blocks received the same fungicide treatments each year. Within data vines,
188	however, inoculation treatments were randomized among spurs each year, as spurs are renewed
189	annually in grape production systems.

Pathogens inoculated to pruning wounds after fungicide applications. Inoculation
treatments were as follows: a water-inoculated control, *C. viticola* (Bent901), *E. lata* (ascospores

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

192	collected from environmental stromata on the wood of Nerium oleander L., in Yolo County,
193	California), and P. chlamydospora (Bent708). Cytospora viticola (Bent901) and P.
194	chlamydospora (Bent708) were originally isolated from vineyards in eastern Washington with
195	symptoms of Esca, and were shown to be virulent in greenhouse assays (Travadon et al. 2022 In
196	Press). Water-inoculated controls (i.e., the spurs that we pipetted water onto instead of pathogen
197	inoculum, in the eight-vine sets that were first sprayed with either water - the water-treated
198	controls - or one of the fungicides) were included in the experimental design as a type of
199	negative control, to determine background levels of local pathogens in the vineyard.
200	For C. viticola, inoculum consisted of spores (conidial) from pycnidia produced in culture
201	on autoclaved grape wood (Lawrence et al. 2017). To induce development of pycnidia, one-
202	year-old grape canes (approx. 1 cm in diameter) were collected in the vineyard and cut into 5 cm
203	long segments. Wood segments were autoclaved in glass Petri plates twice, 24 h apart, at 122 °C
204	for 25 min. Autoclaved wood segments were placed in Petri plates (9 cm diam.), with two
205	segments per plate, and autoclaved potato dextrose agar (PDA; Difco Laboratories) was poured
206	to the level at which the segments were almost completely submerged. An agar plug from an
207	actively growing culture on PDA was placed between the two wood segments, and plates were
208	incubated at room temperature under natural lighting for 4 weeks. During the 4 weeks of
209	incubation, when pycnidia appeared, mature pycnidia were crushed with a flame-sterilized probe
210	in 1 ml of sterile, distilled water, the concentration was estimated with a hemocytometer, and
211	then adjusted with sterile water to 1×10^5 spores/mL.
212	Because <i>E. lata</i> does not produce its infectious sexual spores (ascospores) in culture.

Because *E. lata* does not produce its infectious sexual spores (ascospores) in culture,
ascospores were harvested from fruiting bodies (perithecia) we collected in the field, from the

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

214 infected wood (visibly covered in stromata, within which perithecia were imbedded) of a *Nerium* 215 oleander L., in Solano County, California. To collect ascospores from perithecia, stromata were 216 sliced with a sterile razor blade, to reveal and cut open the perithecial cavities, and a drop of sterile water was placed on the perithecia. Masses of ascospores were then collected with a 217 sterile probe and transferred to 1 ml sterile water. The spore concentration was estimated with a 218 219 hemocytometer, and then adjusted with sterile water to 1×10^5 spores/mL. 220 To produce spore (conidial) suspensions of *P. chlamydospora*, a liquid culture was first established by inoculating ten, 2 mm agar plugs from a 7-day-old culture on PDA to a 250-mL 221 Erlenmeyer flask containing 100 mL of potato dextrose broth (PDB; Difco Laboratories). After 222 incubation at 25°C and 150 rpm for 5 days, a hand-held disperser (IKA-ULTRA-TURRAX T8) 223 224 was used to homogenize the culture (1 min, speed 5), and 100 µl of homogenate was spread onto each of three PDA plates (9 cm diam.). After 14 days, spores were harvested by pipetting 2 mL 225 of sterile water onto the agar surface, filtering the suspension through two layers of sterile 226 cheesecloth to remove fragments of aerial mycelium, the concentration was estimated with a 227 hemocytometer, and then adjusted with sterile water to 1×10^5 spores/mL. 228 Each year, the day before inoculations, inoculum (i.e., the spore suspensions described 229 above) was prepared in Davis, CA and shipped overnight to Prosser, WA. On the day of 230 inoculation in the vineyard, inoculum viability for each pathogen was tested in the lab by plating 231 232 it on PDA. For each inoculation treatment with a pathogen, inoculum was pipetted onto the cut surface of the pruning wounds of data vines (20 µL or 2,000 spores per spur). For water-233 inoculated spurs, 20 uL of sterile water was pipetted onto the cut surface of the pruning wound. 234

235	Incubation of the inoculation treatments in the field, between the time of inoculation and when
236	spurs were collected for pathogen detection, ranged from 39 to 56 days (Table 1).
237	Detection of pathogens to measure fungicide efficacy. From spurs of each inoculation
238	treatment, we collected the distal 15 cm of the spur wood, removing any shoots that had
239	emerged. Spurs were shipped overnight to our lab in Davis, CA, for pathogen detection. DNA-
240	based detection was used for spurs inoculated with C. viticola, using published primers for
241	genus-level detection of Cytospora species (Luo et al. 2017), as detailed below. Because of our
242	past experience with low recovery of C. viticola in culture from inoculated grape in the
243	greenhouse (Lawrence et al. 2017), we were hopeful for higher and especially more consistent
244	data with DNA-based detection. DNA-based detection was also used for <i>E. lata</i> and <i>P.</i>
245	chlamydospora, as both species have proven difficult to isolate in culture. Further, the species
246	specificity against a range of other wood-colonizing fungi of grape has been tested for qPCR
247	primers for E. lata (Pouzoulet et al. 2017, Fujiyoshi et al. 2021a) and P. chlamydospora
248	(Pouzoulet et al. 2013). We have used these qPCR primers to detect <i>E. lata</i> and <i>P.</i>
249	chlamydospora in the field (Brown et al. 2021, Fujiyoshi et al. 2021b). From the distal 15 cm of
250	wood from each inoculated spur, the bark was first scraped off the surface with a flame-sterilized
251	knife and the approximately 0.5 cm of dried wood at the cut surface of the pruning wound was
252	cut away. A 2.5 cm section of wood from below this discarded 0.5 cm end was sealed in a pre-
253	labeled glass vial and stored at -80°C. Wood samples were ground to a powder in chilled
254	containers (Grinder MM400, Retsch, Haan, Germany) and stored at -80°C in 2 mL
255	microcentrifuge tubes. For DNA extraction, 1 mL of extraction buffer [Tris-HCl 100 mM,
256	EDTA 20 mM, NaCl 1.4 M, CTAB 2%, PVPP 2%, β -mercaptoethanol 0.5%, RNAse A 0.4% v/v

257	(Qiagen, Germantown, MD)] was added to 100 mg of wood powder in the 2 mL tube. Tubes
258	were briefly vortexed, 500 μ L of chloroform-isoamyl-alcohol (24:1) was added, tubes were
259	incubated on ice for 5 min, and then centrifuged (2,300 g, 10 min, 4°C). The supernatant was
260	transferred to a new tube and mixed with AP2 buffer and the rest of the manufacturer's protocol
261	for the DNeasy plant mini kit (Qiagen) was followed.
262	For qPCR, 1 μ l of 1X DNA extraction was used as template in a 25 μ L reaction volume
263	consisting of: 1X Brilliant SYBR Green q-PCR Master Mix (Stratagene, La Jolla, CA), 150 nM
264	per primer (Operon Biotechnologies), 30 nM ROX Reference Dye (Invitrogen), and sterile
265	molecular biology-grade water (GIBCO). All reactions were performed in 200 μ L tubes in 96-
266	well plates, in an Mx3000p Real-time PCR Thermal Cycler (Stratagene). The PCR program was
267	as follows: initial denaturation step at 95°C for 3 min, 50 cycles of 20 s at 94°C, followed by 20
268	s at 65°C for both annealing and extension (62°C for C. viticola), and additional melting
269	analysis. After the amplifications were completed, dissociation curves were obtained based on a
270	standard protocol from manufacturer's instructions, and the temperature of the peak of the curve
271	was checked to confirm the correct PCR product. The threshold level for fluorescence was set
272	arbitrarily within the log-linear phase of increase. Genomic DNA from pure cultures was used
273	as positive controls. Amplification of target DNA was based on the dissociation temperature
274	(81.5°C for C. viticola, 79.0-79.5°C for E. lata, 75.9°C for P. chlamydospora). Positive
275	detections were samples crossing the threshold level by 40 cycles for C. viticola, and 45 cycles
276	for <i>E. lata</i> and <i>P. chlamydospora</i> . Detection (%) for each data vine was the percentage of spurs
277	positive for the inoculated pathogen, out of five inoculated spurs.

278	For DNA-based detection of C. viticola, we used Cytospora primers CtBTFF1 and
279	CtBTFR1, which amplify a portion of the β -tubulin gene, and were originally developed for
280	genus-level detection of Cytospora species from the tree crops walnut and plum (Luo et al.
281	2017). Luo et al. (2017) screened the primers against other genera of wood-colonizing fungi of
282	walnut and plum, to demonstrate their specificity to the genus Cytospora. We further evaluated
283	the specificity of the Cytospora primers within our study system by first screening Cytospora
284	species known to be pathogenic to grape, using DNA of virulent isolates from our previous
285	surveys of vineyards with trunk diseases (US states from which isolates were collected are in
286	parentheses; Supplemental Table 1): Cytospora species 1 [Washington (Travadon et al. 2022 In
287	Press)], Cytospora vinacea [New Hampshire (Lawrence et al. 2017)], and C. viticola [California
288	(Lawrence et al. 2017) and Washington (Travadon et al. 2022 In Press)]. We also evaluated the
289	Cytospora primers from all Cytospora species cultured from the water-inoculated (control) spurs,
290	from which we made culture attempts each of the three study years, as detailed below. Species-
291	level identity of the Cytospora isolates was confirmed by sequencing the rDNA internal
292	transcribed spacer region (ITS) (White et al. 1990) and translational elongation factor 1- α (TEF)
293	(Carbone and Kohn 1999), both of which have been shown to be informative for species
294	delineation in the genus Cytospora, especially for some of the Cytospora species reported from
295	grape (namely, C. vinacea and C. viticola) (Lawrence et al. 2017).
296	Although there were no vines with external symptoms of trunk diseases in the vineyard,
297	our experimental design included water-inoculated (control) spurs on the data vines within each
298	fungicide treatment, to determine the presence of local pathogens, originating possibly from
299	asymptomatic vines in the vineyard or from symptomatic vines/alternate hosts outside the

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

300	vineyard. Spores from such hosts may have infected spurs between the time of pruning and the
301	collection of spurs (i.e., coinciding with the incubation period of the pathogens that were
302	inoculated to the spurs). Groups of pathogens we were particularly interested in isolating from
303	water-inoculated (control) spurs were as follows: 1) The three species inoculated as part of the
304	experimental design (C. viticola, E. lata, and P. chlamydospora), the presence of which would be
305	expected to contribute to the detection rates we measured; 2) Causal fungi of Cytospora dieback,
306	Eutypa dieback, and Esca, other than the three pathogens we inoculated to spurs; and 3) Causal
307	fungi of other trunk diseases, namely Botryosphaeria dieback and Phomopsis dieback. To check
308	this 'background level' of local pathogens, we attempted to culture fungi from all water-
309	inoculated spurs on both fungicide-treated and water-treated data vines. From the distal 15 cm of
310	wood from each water-inoculated spur, the bark was first scraped off the surface with a flame-
311	sterilized knife and the approximately 0.5 cm of dried wood at the cut surface of the pruning
312	wound was cut away. From the 2.5 cm section of wood from below this discarded 0.5 cm end,
313	we cut 16 small (each approx. 5 mm ³) pieces of wood from apparently healthy wood and
314	discolored wood (if present). Wood chips were surface sterilized in 0.6% sodium hypochlorite
315	(pH 7.2) for 15 s, rinsed twice in sterile distilled water for 1 min, plated on two PDA dishes
316	amended with tetracycline (1 mg/L, Sigma-Aldrich) per spur, and incubated at 23°C. At 3, 6, 10,
317	15, and 30 days (to accommodate fast and slow-growing pathogens) subcultures were hyphal-tip
318	purified to PDA for identification. Isolates were identified to the species level based on
319	sequencing of ITS and TEF.

320 Statistical analyses. For each pathogen, separate analyses of variance (ANOVAs) were
321 used to determine the main effects of *year* and *fungicide treatment*, and their interaction on

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

322	detection (%). Normality and homogeneity of variances were evaluated, and confirmed, using
323	normal probability plots and Levene's test, respectively. ANOVAs were performed using the
324	MIXED procedure in SAS v. 9.4 (SAS Institute, Cary, NC, U.S.A.), with year and treatment as
325	fixed effects, and block and block interactions as random effects. Year was considered a
326	repeated measure. Appropriate covariance models were selected for ANOVAs of each pathogen
327	based on comparisons of information criteria (AIC, AICC, BIC), as specified in the REPEATED
328	statement (unstructured for C. viticola and P. chlamydospora, autoregressive for E. lata). For
329	significant main or interactive effects ($P < 0.05$), means were compared by Tukey's tests. When
330	interactive effects were not significant, means for significant main effects were compared by
331	Tukey's tests. To aid in the presentation and interpretation of the detection rates, we also
332	calculated efficacy (%) as $100 \times [1 - (Detection_{Fungicide}/Detection_{Control})]$, where $Detection_{Fungicide}$
333	is detection (%) of the pathogen from fungicide-treated spurs and $Detection_{Control}$ is detection (%)
334	of the pathogen from water-treated spurs. In this way, a high detection rate corresponds to a low
335	efficacy. Efficacies of the fungicides against the pathogens were calculated from detection rates,
336	but efficacies were not analyzed statistically.

337

Results

Differences in detection and environmental variables among study years. In order to ensure that our experimental approach evaluated fungicide efficacy consistently among fungicide treatments and over time, we used the same procedures to prepare inoculum each year, and then we evaluated inoculum viability in culture on the day of inoculation. However, spores of *E. lata* in 2019 (year 1) did not germinate on the day of inoculation, which was consistent with no detection of *E. lata* from the inoculated spurs (Table 2), which were collected 56 days later.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

344	Fortunately, <i>E. lata</i> inoculum was viable and inoculations were successful in 2020 and 2021 ($P =$
345	0.006 for year x fungicide treatment), with detection rates from the water-treated spurs of 40%
346	and 83%, respectively (Table 2). Detection rates of C. viticola were consistently high in all
347	study years, in spite of statistically significant variation over time ($P=0.03$ for year). Detection
348	rates of C. viticola from water-treated spurs ranged from a low of 91% in 2021 to a high of 98%
349	in 2019. In contrast, detection rates of <i>P. chlamydospora</i> were much more variable (and
350	statistically significant at $P < 0.0001$ for year) over time. Detection rates of P. chlamydospora
351	from water-treated spurs ranged from a low of 29% in 2019 to a high of 98% in 2021.
352	The timing of pruning at the start of the experiment corresponded to the time of pruning
353	by growers in commercial vineyards. Because early March 2019 was cold and the vineyard
354	under snow (Figure 1), pruning and subsequent activities were later than in other years (pruning
355	on 28 March 2019 and spur collection on 28 May 2019). That said, 2019 was characterized by
356	the highest temperatures on the day of inoculation, during the week following inoculation, and
357	during the entire incubation period (Table 3). In contrast, 2020 was characterized by the lowest
358	temperatures during these same periods. Total precipitation during the incubation period was
359	highest in 2019 (37.6 mm), but was extremely low in 2020 in 4.1 mm. There was no rain during
360	the 2021 study period. Each year, on the day of inoculation, there was no precipitation (Figure
361	1), but relative humidity ranged from a low of 44.5% in 2019 to a high of 59.4% in 2020 (Table
362	3). Regardless, climate differences among study years did not seem to correspond to differences
363	in detection rates of E. lata or P. chlamydospora from water-treated spurs.
364	Fungicide efficacy. Thiophanate-methyl was the most effective fungicide against C.

365 viticola infection. Detection of C. viticola was lower for pruning wounds treated with

366	thiophanate-methyl ($P < 0.0001$ for <i>fungicide treatment</i>) versus the water-treated control in all
367	three study years (Table 2). Detection of C. viticola from pruning wounds treated with
368	thiophanate-methyl ranged from 22 to 62%, which corresponded to efficacies ranging from 33 to
369	77% (Table 2). Detection of C. viticola was also lower for pruning wounds treated with
370	pyraclostrobin + fluxapyroxad ($P < 0.0001$ for <i>fungicide treatment</i>); detection rates ranged from
371	71 to 87%, which corresponded to efficacies ranging from 7 to 27% (Table 2). The mean
372	detection rates of C. viticola from water-treated spurs ranged from 91 to 98%, averaged across
373	three blocks per year.
374	Thiophanate-methyl was the most effective fungicide against P. chlamydospora in two of
375	three years. Detection of <i>P. chlamydospora</i> was significantly lower for pruning wounds treated
376	with thiophanate-methyl ($P = 0.04$ for <i>fungicide treatment</i>) versus the water-treated control
377	(Table 2). Nonetheless, in 2021, detection of P. chlamydospora from thiophanate-methyl-treated
378	spurs was high at 93%; as such, the efficacy of thiophanate-methyl against P. chlamydospora
379	was only 5% in 2021, as compared to efficacies of 62% and 38% in 2019 and 2020, respectively.
380	Pyraclostrobin + fluxapyroxad was not effective against <i>P. chlamydospora</i> ; detection of <i>P.</i>
381	chlamydospora from pruning wounds sprayed with pyraclostrobin + fluxapyroxad was in each
382	year either close to or higher than that of the water-treated controls.
383	Thiophanate-methyl was the most effective fungicide against <i>E. lata</i> , but only in 2021
384	(P=0.006 for year x fungicide treatment). Of the two study years when <i>E. lata</i> inoculations
385	were successful (2020 and 2021), detection of <i>E. lata</i> was lower in 2021 for pruning wounds
386	sprayed with thiophanate-methyl versus the water-treated control (mean detection rates of 24%
387	versus 83%, averaged across three blocks per year), with a corresponding efficacy of 71% (Table

388	2). Detection of <i>E. lata</i> was intermediate in 2021 for pruning wounds sprayed with
389	pyraclostrobin + fluxapyroxad (mean detection rate of 60%, averaged across three blocks per
390	year, with a corresponding efficacy of 28% (Table 2).
391	Pathogens and other fungi isolated from water-inoculated (control) spurs. Across the
392	three years, we cultured 22 isolates, based on culture attempts from 405 total water-inoculated
393	(control) spurs (45 water-inoculated spurs per fungicide treatment x three fungicide treatments x
394	three years = 405 total water-inoculated spurs). These 22 isolates were identified as the
395	following species (number of spurs per fungicide treatment are shown in parentheses):
396	Cryptovalsa ampelina (nine water-treated spurs), Cytospora chrysosperma (one water-treated
397	spur), Cytospora parakantschavelii (one water-treated spur), Cytospora parasitica (three water-
398	treated spurs, one pyraclostrobin + fluxopyroxad-treated spur), Cytospora ulmicola (one
399	pyraclostrobin + fluxopyroxad-treated spur), Cytospora viticola (one water-treated spur, one
400	thiophanate-methyl-treated spur), undescribed species Cytospora species 2 (one water-treated
401	spur), and Diplodia seriata (one water-treated spur). Prior to the experiment, we found that in
402	addition to C. viticola, the Cytospora primers used for detection of C. viticola also detected other
403	Cytospora species known to be pathogenic to grape, based on positive amplification of isolates
404	from our culture collection of Cytospora species 1 and C. vinacea (Supplemental Table 1).
405	During the experiment, we found that the Cytospora primers detected isolates from the non-
406	inoculated (control) spurs, namely C. chryosperma, C. parakantschavelii, C. parasitica,
407	Cytospora species 2, and C. ulmicola; the pathogenicity of these species on grape is not known.
408	Altogether, the Cytospora primers detected nine of the 10 total Cytospora isolates we tested
409	(Supplemental Table 1), with amplification products ranging in size from 85 to 93 bp. We

410	assume therefore that some of our qPCR detections might represent a species of Cytospora other
411	than C. viticola. However, given that Cytospora species other than C. viticola were isolated
412	from only eight of the 405 water-inoculated spurs we made culture attempts from (2.2%), we
413	assume their detection rate is negligible.
414	Discussion
415	The high efficacy of thiophanate-methyl against C. viticola and P. chlamydospora suggests this
416	fungicide could minimize dormant-season pruning-wound infection by these pathogens.
417	Thiophanate-methyl is a grower standard fungicide treatment in California, based on current
418	recommendations (Gubler et al. 2013), but was not registered for dormant-season use in
419	Washington at the start of our study. Thiophanate-methyl was also the most effective fungicide
420	against E. lata in one of two study years, which was the year in which the E. lata inoculations
421	were most successful. Pyraclostrobin + fluxapyroxad was associated with lower detection rates
422	of C. viticola than those of the water-treated controls in all three years, but its efficacy was below
423	27%. Our findings are novel, with respect to C. viticola, a trunk-disease pathogen which has not
424	been included in past studies on pruning-wound protectants. No studies have evaluated pruning-
425	wound protectants for a Cytospora species virulent on grape, although studies on other
426	Cytospora species that attack tree crops (e.g., peach and almond) report that thiophanate-methyl
427	is effective against preventing their infection (Miller et al. 2019, Holland et al. 2021).
428	Thiophanate-methyl has been previously shown to have moderate to high efficacy against
429	a broad range of trunk-disease pathogens: E. lata (Rolshausen et al. 2010), Botryosphaeria-
430	dieback pathogens [(B. dothidea, D. viticola, D. seriata, and L. theobromae (Rolshausen et al.
431	2010), D. seriata (Diaz and Latorre 2013, Martinez-Diz et al. 2021), N. luteum (Amponsah et al.

432	2012), and N. parvum (Brown et al. 2021)], Phomopsis-dieback pathogen Diaporthe ampelina
433	(Brown et al. 2021), and Esca pathogen P. chlamydospora (Diaz and Latorre 2013, Martinez-Diz
434	et al. 2021). Most of these studies cited above relied on the application of thiophanate-methyl at
435	an experimental scale and with spray bottles, whereas we used a backpack sprayer and timed the
436	applications when and how a grower would (i.e., soon after pruning). Our findings confirmed
437	thiophanate-methyl could protect pruning wounds, when applied with a back-pack sprayer to
438	each and every pruning wound to the point of run-off, from taxonomically diverse pathogens.
439	Pyraclostrobin has been tested in various formulations and was moderately effective
440	against E. lata [e.g., in California (Rolshausen et al. 2010, Brown et al. 2021) and in Australia
441	(Sosnowski et al. 2008, Sosnowski et al. 2013, Ayres et al. 2017, Ayres et al. 2022)], against
442	Botryosphaeria-dieback pathogens [e.g., Botryosphaeria dothidea, Diplodia seriata, Dothiorella
443	viticola, and Lasiodiplodia theobromae in California (Rolshausen et al. 2010), Neofusicoccum
444	parvum in California (Brown et al. 2021), and Neofusicoccum luteum in Australia (Ayres et al.
445	2022)] and against P. chlamydospora (Rolshausen et al. 2010, Diaz and Latorre 2013).
446	However, we did not see similar promising results; pyraclostrobin + fluxapyroxad had low
447	efficacy against C. viticola, E. lata, and P. chlamydospora. When we consider variable efficacy
448	of pyraclostrobin against the same pathogen species in different studies, differences could result
449	from variable isolate virulence, differing formulations, concentrations, application methods,
450	and/or inoculation methods. For example, we found low efficacy of pyroclostrobin, with P .
451	chlamydospora spores inoculated to pruning wounds, after applying pyraclostrobin +
452	fluxapyroxad as a liquid formulation via a back-back sprayer. In contrast, Diaz and Latorre
453	(2013) found high efficacy of pyroclostrobin, with agar plugs from an actively growing culture

454	of <i>P. chlamydospora</i> inoculated to pruning wounds, after applying pyroclostrobin as a paste
455	formulation. To further compare and contrast studies on pyroclostrobin versus P.
456	chlamydospora, Rolshausen et al. (2010) found high efficacy of pyroclostrobin, with P.
457	chlamydospora spores inoculated to pruning wounds, after applying pyraclostrobin at 10 times
458	the concentration we used. Our findings of low efficacy of pyroclostrobin against E. lata are
459	consistent with those of other studies on grape (Sosnowski et al. 2013, Ayres et al. 2017) and
460	almond (Holland et al. 2021).
461	The ideal environmental conditions for spore germination and subsequent infection of
462	pruning wounds are not known for the pathogens we tested. In addition to freezing temperatures,
463	other factors that may negatively impact the viability of the spore suspensions after they are
464	pipetted onto pruning wounds include exposure to UV light and dry conditions caused by wind.
465	As such, we try not to inoculate on sunny, windy days that are either very hot or very cold. Each
466	year, we inoculated with higher spore concentrations (2,000 spores per spur) than would likely
467	occur naturally, in order to achieve consistently high pathogen pressure across fungicide
468	treatments and years. Nonetheless, this approach may not sufficiently compensate for the effects
469	of poor environmental conditions at the time of pathogen inoculation and colonization in some
470	years more than others; hence the variable detection rates we found from year to year for P .
471	chlamydospora and E. lata. Higher detection rates of P. chlamydospora and E. lata in 2021 may
472	possibly be due to a combination of conditions that favored infection on the day of inoculation or
473	during incubation, for e.g., no freezing temperatures and moderate relative humidity, and/or
474	higher pruning-wound susceptibility. Variable detection rates from year to year for <i>P</i> .
475	<i>chlamydospora</i> (2021 > 2020 and 2019) and <i>E. lata</i> (2021 > 2020) suggest there is annual

476	variation in either inoculum viability in the laboratory or spore survival/pruning-wound
477	susceptibility in the field. Conidia of P. chlamydospora consisted of conidia from a single
478	isolate produced under the same laboratory conditions each year, whereas ascospores of E. lata
479	had to be harvested from an infected oleander tree each year. The reliance on such
480	environmental samples may explain the lack of viability (and the lack of infections in the field)
481	of <i>E. lata</i> ascospores in 2019; this is one of the risks of having to use field-collected spores of <i>E.</i>
482	lata for our research, as spore maturity and viability cannot be under our control.
483	Because we made culture attempts from all water-inoculated (control) spurs within each
484	fungicide treatment, we were able to characterize the 'background level' of local pathogens each
485	year, albeit from isolates from a low proportion of samples (22 of 405 spurs). We identified C .
486	viticola, which was one of our inoculation treatments (albeit on inoculated spurs), and other
487	Cytospora species known to be pathogenic to grape, Cytospora species 1 (and undescribed
488	species, which we have in our culture collection) and C. vinacea (Lawrence et al. 2017). Other
489	species pathogenic to grape we identified included Cryptovalsa ampelina, which is in the same
490	fungal family as Eutypa lata (Diatrypaceae) and also causes dieback symptoms, and
491	Botryosphaeria-dieback pathogen Diplodia seriata, which was identified in a previous survey of
492	Washington vineyards (Holland et al. 2015). Although characterization of natural fungal
493	infections of pruning wounds is rarely published [e.g., (Luque et al. 2014)], and could potentially
494	be very site and year-specific, this step helped us evaluate our DNA-based detection method of
495	C. viticola. Certainly, we knew prior to the field trial that the qPCR primers were not species-
496	specific. Indeed, the primers amplified five additional Cytospora species, which we identified
497	along with C. viticola from a combined 2.2% of the 405 water-inoculated (control) spurs

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

498	examined throughout the 3 years. The diversity of Cytospora species, many of which are of
499	unknown pathogenicity to grape, suggests that Cytospora dieback may be caused by more
500	species than just C. viticola.
501	The main benefit of DNA-based detection via qPCR over culture-based detection of the
502	three pathogens was being able to store the samples (540 spurs each year) at -20°C for
503	processing over a period of time. Our study coincided with the global COVID pandemic, which
504	limited our ability to process samples in the time-sensitive manner necessitated by culture-based
505	detection; DNA-based detection allowed us to continue the study in consecutive years through
506	lab-occupancy restrictions. We acknowledge, though, that this approach does have limits. For
507	example, in this study, the consistently high detection rates of C. viticola, even from fungicide-
508	treated spurs, may reflect detection of DNA from dead spores. It is also possible that in some
509	cases we detected DNA of dead E. lata spores that traveled within xylem vessels below the
510	surface of the pruning wound, as has been shown at depths of 5 to 8 mm after artificial
511	inoculations under dry conditions, similar to inoculation conditions in this study (Carter 1960,
512	Larignon 2010). However, we discarded the distal approximately 0.5-cm end of the spur, and
513	extracted DNA from the wood below. Further, in 2019, E. lata inoculum was not viable and we
514	had 0% detection via qPCR. As such, it seems that our DNA-based detection method did not
515	have a high rate of false positives (i.e., did not detect the DNA of dead spores of <i>E. lata</i>).
516	Consequently, we assume that positive detection through qPCR reflects detection of the
517	corresponding, metabolically active pathogens.
518	

518

519	Conclusions
520	Because we timed the fungicide applications in our study to closely follow the typical time of
521	final pruning in commercial vineyards, we assume our findings on fungicide efficacy would be
522	relevant if spores of C. viticola, E. lata, or P. chlamydospora are dispersed after pruning. We
523	demonstrated that fresh pruning wounds are susceptible to infection by the three pathogens,
524	albeit at higher spore concentrations than they may encounter naturally. Additionally,
525	environmental conditions during the dormant season in eastern Washington are cold and dry,
526	which may also limit disease pressure. Pruning wounds, however, may not be the only point of
527	infection for these pathogens. Wounds to the permanent, woody structure of the vine that are
528	created by winter injury may be an important infection court, in addition to or more so than
529	pruning wounds. More work is needed on the susceptibility of such wounds and their natural
530	healing process in eastern Washington, to reveal the best time for preventative practices, like
531	fungicide applications and the timing of pruning.
532	Literature Cited
533	Amponsah NT, Jones EE, Ridgway HJ, Jaspers MV. 2012. Evaluation of fungicides for the
534	management of Botryosphaeria dieback diseases of grapevines. Pest Manag Sci 68:676-683.
535	<u>doi:10.1002/ps.2309</u> .
536	Amponsah NT, Jones EE, Ridgway HJ, Jaspers MV. 2009. Rainwater dispersal of
537	Botryosphaeria conidia from infected grapevines. New Zeal Plant Prot 62:228-233.
538	doi:10.30843/nzpp.2009.62.4824.

- 539 Anco DJ, Madden LV, Ellis MA. 2012. Temporal patterns of sporulation potential of *Phomopsis*
- 540 *viticola* on infected grape shoots, canes, and rachises. Plant Dis 96:1297-1302.
- 541 <u>doi:10.1094/PDIS-09-11-0806-RE</u>.
- 542 Ayres MR, Billones-Baaijens R, Savocchia S, Scott ES, Sosnowski MR. 2022. Critical timing of
- 543 fungicide application for pruning wound protection to control grapevine trunk diseases. Aust
- 544 J Grape Wine Res 28:70-74. <u>doi:10.1111/ajgw.12517</u>.
- 545 Ayres MR, Wicks TJ, Scott ES, Sosnowski MR. 2017. Developing pruning wound protection
- 546 strategies for managing Eutypa dieback. Aust J Grape Wine Res 23:103-111.
- 547 <u>doi:10.1111/ajgw.12254</u>.
- 548 Baumgartner K, Hillis V, Lubell M, Norton M, Kaplan J. 2019. Managing grapevine trunk
- diseases in California's southern San Joaquin Valley. Am J Enol Vitic 70:267-276.
- 550 doi:10.5344/ajev.2019.18075.
- 551 Brown AA, Travadon R, Lawrence DP, Torres G, Zhuang G, Baumgartner K. 2021. Pruning-
- 552 wound protectants for trunk-disease management in California table grapes. Crop Prot
- 553 141:105490. doi:10.1016/j.cropro.2020.105490.
- 554 Calzarano F, Di Marco S, Cesari A. 2004. Benefit of fungicide treatment after trunk renewal of
- vines with different types of Esca necrosis. Phytopathol Mediterr 43:116-124.
- 556 doi:10.14601/Phytopathol Mediterr-1725.
- 557 Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in
- filamentous ascomycetes. Mycologia 91:553-556. <u>doi:10.1080/00275514.1999.12061051</u>.
- 559 Carter MV. 1960. Further studies on *Eutypa armeniacae* Hansf. & Carter. Aust J Agric Res
- 560 44:498-504. <u>doi:10.1071/AR9600498</u>.

- 561 Carter MV. 1991. The status of *Eutypa lata* as a pathogen. Phytopathological Paper 32.
- 562 Commonwealth Agricultural Bureau, International Mycological Institute, Wallingford, Oxon,
- 563 England.
- 564 Dekrey DH, Klodd AE, Clark MD, Blanchette RA. 2022. Grapevine trunk diseases of cold-hardy
- varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury.
- 566 PLOS ONE 17:e0269555. <u>doi:10.1371/journal.pone.0269555</u>.
- 567 Diaz GA, Latorre BA. 2013. Efficacy of paste and liquid fungicide formulations to protect
- 568 pruning wounds against pathogens associated with grapevine trunk diseases in Chile. Crop
- 569 Prot 46:106-112. <u>doi:10.1016/j.cropro.2013.01.001</u>.
- 570 Fujiyoshi P, Lawrence DP, Travadon R, Baumgartner K. 2021a. DNA-based detection of
- 571 grapevine trunk-disease pathogens from environmental spore samples. MethodsX 8:101494.
- 572 doi:10.1016/j.mex.2021.101494.
- 573 Fujiyoshi P, Lawrence DP, Travadon R, Cooper M, Verdegaal PS, Schwebs S, Baumgartner K.
- 574 2021b. Detection of spores of causal fungi of dieback-type trunk diseases in young,
- asymptomatic vineyards and mature, symptomatic vineyards. Crop Prot 150:105798. doi:
- 576 <u>10.1016/j.cropro.2021.105798</u>.
- 577 González-Domínguez E, Berlanas C, Gramaje D, Armengol J, Rossi V, Berbegal M. 2020.
- 578 Temporal dispersal patterns of *Phaeomoniella chlamydospora*, causal agent of Petri disease
- 579 and esca, in vineyards. Phytopathol 110:1216-1225. <u>doi:10.1094/PHYTO-10-19-0400-R</u>.
- 580 Gramaje D, Armengol J. 2011. Fungal trunk pathogens in the grapevine propagation process:
- 581 Potential inoculum sources, detection, identification, and management strategies. Plant Dis
- 582 95:1040-1055. <u>doi:10.1094/PDIS-01-11-0025</u>.

- 583 Gramaje D, Urbez-Torres JR, Sosnowski MR. 2018. Managing grapevine trunk diseases with
- respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis
- 585 102:12-39. doi:10.1094/PDIS-04-17-0512-FE.
- 586 Gubler WD, Rolshausen PE, Trouillas FP. 2013. Eutypa dieback. In Grape Pest Management 3rd
- 687 ed. Bettiga LJ (eds.), pp. 110-116. Book University of California, Division of Agriculture
- 588 and Natural Resources, Oakland, CA.
- 589 Holland LA, Grove GG, Glawe D. 2015. Washington grapevine trunk disease survey. Viticulture
- and Enology Extension News (Washington State University) Spring 2015:4. Online:
- 591 https://s3-us-west-2.amazonaws.com/sites.cahnrs.wsu.edu/wp-
- 592 content/uploads/sites/66/2010/07/2015-VEEN-Spring-FINAL.pdf.
- 593 Holland LA, Travadon R, Lawrence DP, Nouri MT, Trouillas F. 2021. Evaluation of pruning
- 594 wound protection products for the management of almond canker diseases in California.
- 595 Plant Dis 105:3368-3375. <u>doi:10.1094/PDIS-11-20-2371-RE</u>.
- 596 Kaplan J, Travadon R, Cooper M, Hillis V, Lubell M, Baumgartner K. 2016. Identifying
- 597 economic hurdles to early adoption of preventative practices: The case of trunk diseases in
- 598 California winegrape vineyards. Wine Econ Policy 5:127-141.
- 599 <u>doi:10.1016/j.wep.2016.11.001</u>.
- Larignon P. 2010. Eutypiose, la pluie favorise la penetration des spores. Phytoma 634:53-55.
- Lawrence DP, Travadon R, Pouzoulet J, Rolshausen PE, Wilcox WF, Baumgartner K. 2017.
- 602 Characterization of *Cytospora* isolates from wood cankers of declining grapevine in eastern
- North America, with the descriptions of two new *Cytospora* species. Plant Pathol 66:713-
- 604 725. <u>doi:10.1111/ppa.12621</u>.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

605	Luo Y, Gu S, Felts D, Puckett RD, Morgan DP, Michailides TJ. 2017. Development of qPCR
606	systems to quantify shoot infections by canker-causing pathogens in stone fruits and nut
607	crops. J Applied Microbiol 122:416-428. doi:10.1111/jam.13350.
608	Luque J, Elena G, Garcia-Figueres F, Reyes J, Barrios G, Legorburu FJ. 2014. Natural infections
609	of pruning wounds by fungal trunk pathogens in mature grapevines in Catalonia (Northeast
610	Spain). Aust J Grape Wine Res 20:134-143. <u>doi:10.1111/ajgw.12046</u> .
611	Martinez-Diz M, Diaz-Losada E, Diaz-Fernandez A, Bouzas-Cid Y, Gramaje D. 2021.
612	Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia
613	seriata by commercial biological and chemical methods. Crop Prot 143:105465.
614	doi:10.1016/j.cropro.2020.105465.
615	Miller ST, Otto KL, Sterle D, Minas IS, Stewart JE. 2019. Preventive fungicidal control of
616	Cytospora leucostoma in peach orchards in Colorado. Plant Dis 103:1138-1147.
617	doi:10.1094/PDIS-05-18-0801-RE.
618	Petzoldt CH, Moller WJ, Sall MA. 1981. Eutypa dieback of grapevine: Seasonal differences in
619	infection and duration of susceptibility of pruning wounds. Phytopathol 71:540-543.
620	doi: <u>10.1094/Phyto-71-540</u> .
621	Pouzoulet J, Mailhac N, Couderc C, Besson X, Dayde J, Lummerzheim M, Jacques A. 2013. A
622	method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium
623	aleophilum DNA in grapevine-wood samples. Appl Microbiol Biotechnol 97:10163-10175.
624	doi:10.1007/s00253-013-5299-6.
625	Pouzoulet J, Rolshausen P, Schiavon M, Bol S, Travadon R, Lawrence DP, Baumgartner K,
626	Ashworth VE, Comont G, Corio-Costet M-F, Pierron RJG, Besson X, Jacques A. 2017. A

627	method to detect and quantify <i>Eutypa lata</i> and <i>Diplodia seriata/intermedia</i> complex DNA in
628	grapevine pruning wounds. Plant Dis 101:1470-1480. doi:10.1094/PDIS-03-17-0362-RE.
629	Ramos DE, Moller WJ, English H. 1975. Production and dispersal of ascospores of Eutypa
630	armeniacae in California. Phytopathol 65:1364-1371. doi:10.1094/Phyto-65-1364.
631	Rolshausen PE, Gubler WD. 2005. Use of boron for the control of Eutypa dieback of grapevines.
632	Plant Dis 89:734-738. doi:10.1094/PD-89-0734.
633	Rolshausen PE, Urbez-Torres JR, Rooney-Latham S, Eskalen A, Smith RJ, Gubler WD. 2010.
634	Evaluation of pruning wound susceptibility and protection against fungi associated with
635	grapevine trunk diseases. Am J Enol Vitic 61:113-119.
636	Rooney-Latham S, Eskalen A, Gubler WA. 2005. Ascospore release of Togninia minima, cause
637	of esca and grapevine decline in California. Plant Health Progress 6:16. doi:10.1094/PHP-
638	<u>2005-0209-01-RS</u> .
639	Sosnowski MR, Creaser ML, Wicks TJ, Lardner R, Scott ES. 2008. Protection of grapevine
640	pruning wounds from infection by Eutypa lata. Aust J Grape Wine Res 14:134-142.
641	<u>doi:10.1111/j.1755-0238.2008.00015.x</u> .
642	Sosnowski MR, Loschiavo AP, Wicks TJ, Scott ES. 2013. Evaluating treatments and spray
643	application for the protection of grapevine pruning wounds from infection by Eutypa lata.
644	Plant Dis 97:1599-1604. doi:10.1094/PDIS-02-13-0201-RE.
645	Sosnowski MR, Wicks TJ, Scott ES. 2011. Control of Eutypa dieback in grapevines using
646	remedial surgery. Phytopathol Mediterr 50:S277-S284. doi:10.14601/Phytopathol_Mediterr-
647	8919.

648	Travadon R, Lawrence DP, Moyer MM, Hernandez AI, Fujiyoshi PT, Mireles M, Baumgartner
649	K. 2022. Fungal species associated with grapevine trunk diseases in Washington wine-grapes
650	and California table-grapes, with novelties in the genera Cadophora, Cytospora, and
651	Sporocadus. Frontiers Fungal Biol 3: 1018140. doi:10.3389/ffunb.2022.1018140
652	Úrbez-Torres JR, Battany M, Bettiga LJ, Gispert C, McGourty G, Roncoroni J, Smith RJ,
653	Verdegaal P, Gubler WD. 2010. Botryosphaeriaceae species spore-trapping studies in
654	California vineyards. Plant Dis 94:717-724. doi:10.1094/PDIS-94-6-0717.
655	Úrbez-Torres JR, Gispert C, Trouillas FP. 2020. Spore dispersal of Eutypella species under
656	desert grape-growing conditions of southern California. Phytopathol Mediterr 59:485-501.
657	doi:10.14601/Phyto-11807.
658	Úrbez-Torres JR, Gubler WD. 2011. Susceptibility of grapevine pruning wounds to infection by
659	Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathol 60:261-270.
660	<u>doi:10.1111/j.1365-3059.2010.02381.x</u> .
661	USDA National Agricultural Statistics Service. 2018. Noncitrus Fruits and Nuts 2017 Summary.
662	United States Department of Agriculture, National Agricultural Statistics Service,
663	Washington, D. C.
664	https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0618.pdf. Accessed
665	3/7/2022.
666	van Niekerk JM, Calitz FJ, Halleen F, Fourie PH. 2010. Temporal spore dispersal patterns of
667	grapevine trunk pathogens in South Africa. Eur J Plant Pathol 127:375-390.
668	doi:10.1007/s10658-010-9604-2.

- 669 Weber EA, Trouillas FP, Gubler WD. 2007. Double pruning of grapevines: a cultural practice to
- 670 reduce infections by *Eutypa lata*. Am J Enol Vitic 58:61-66.
- 671 White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal and
- ribosomal RNA genes for phylogenetics. *In* PCR Protocols: A Guide to Methods and
- Applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), pp. 315-322. Book
- 674 Academic Press, Inc., San Diego, CA. <u>doi:10.1016/B978-0-12-372180-8.50042-1</u>.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22019 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

- 675 **Table 1** Timing of pruning, application of fungicide treatments and inoculation treatments, and
- 676 spur-collection steps in the Prosser, Washington vineyard. Step 4 was carried out after budbreak,
- 677 when shoots growing from inoculated spurs were approximately 20 cm long.

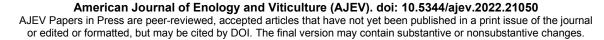
Practice	2019	2020	2021
Step 1: Pruning	28 March	14 March	22 March
Step 2: Fungicide treatments	1 April	16 March	23 March
Step 3: Inoculation treatments	2 April	17 March	25 March
Step 4: Collection of spurs for pathogen detection	28 May	28 April	3 May
Incubation period of pathogens in inoculated spurs	56 days	42 days	39 days
Total study period	62 days	46 days	43 days

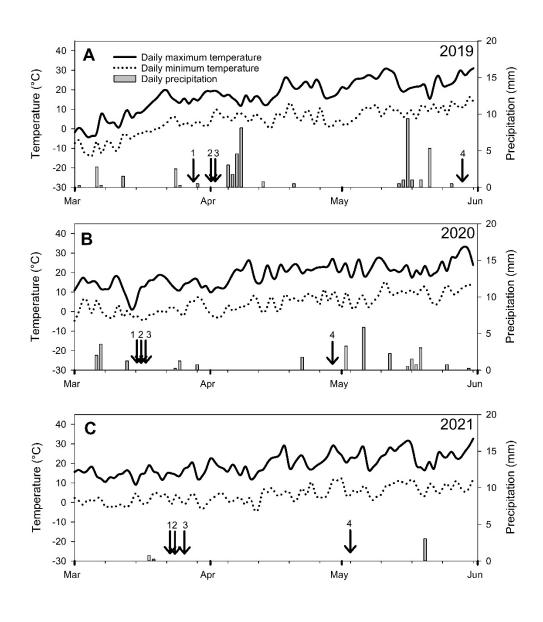
678

- 679 **Table 2** DNA-based detection of pathogens inoculated to pruning wounds, after application of fungicide treatments, compared to that
- of a water-treated, inoculated control. Detection (%) is the percentage of spurs from which the pathogen was detected, out of the total
- number of inoculated spurs [95% confidence limits (CL) are shown in parentheses]. Efficacy (%) is 100 x [1 –
- 682 (Detection_{Fungicide}/Detection_{Control})]. Fungicide treatments with detection rates higher than that of the water-treated control were
- 683 completely ineffective; they were given an efficacy of 0, rather than the calculated negative value. Each value is the mean of three
- 684 blocks (with three data vines per block and five spurs per pathogen per data vine). Detection rates within a year with different letters
- are significantly different (Tukey's test, P < 0.05).

		Cutograng witig	la	Phaeomoniella		Entre a lata		
		Cytospora vitica Detection (%)	Efficacy	<i>chlamydospora</i> Detection (%)	Efficacy	<i>Eutypa lata</i> Detection (%)	Efficacy	
Year	Fungicide treatment	(95% CL)	(%)	(95% CL)	(%)	(95% CL)	(%)	
2019	Water-treated	98 a (87 - 109)	· · ·	29 a (21 - 37)	\$ <i>1</i>	0		
	Pyraclostrobin + fluxapyroxad	71 b (60 - 82)	27	24 ab (16 - 32)	15	0	-	
	Thiophanate-methyl	22 c (11 - 33)	77	11 b (3 - 19)	62	0	-	
2020	Water-treated	93 a (74 - 112)		29 a (24 - 34)		40 a (23 - 57)		
	Pyraclostrobin + fluxapyroxad	87 b (68 - 106)	7	27 ab (22 - 32)	8	51 a (35 - 68)	0	
	Thiophanate-methyl	62 c (43 - 81)	33	18 b (13 - 23)	38	47 a (30 - 63)	0	
2021	Water-treated	91 a (83 - 99)		98 ab (95 - 101)		83 a (63 - 104)		
	Pyraclostrobin + fluxapyroxad 73 b (65 - 81)		20	100 a (97 - 103)	0	60 a (43 - 77)	28	
	Thiophanate-methyl	33 c (25 - 41)	64	93 b (90 - 96)	5	24 b (8 - 41)	71	

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.21050 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.


- 687 **Table 3** Weather (total precipitation, maximum temperature, minimum temperature, and relative
- humidity) on the day of pathogen inoculation, during the week following inoculation, and during
- the entire incubation period (i.e., between inoculation treatment and collection of spurs for
- 690 pathogen detection), in the Prosser, Washington vineyard.


Climate conditions	2019	2020	2021
Day of inoculation			
Total precipitation	0 mm	0 mm	0 mm
Daily maximum temperature	19.5°C	12.9°C	13.6°C
Daily minimum temperature	9.6°C	-4.5°C	1.9°C
Daily relative humidity	44.5%	59.4%	56.2%
Week following inoculation			
Total precipitation	17.5 mm	0 mm	0 mm
Average maximum temperature	16.2°C	16.2°C	16.0°C
Average minimum temperature	7.1°C	-0.7°C	0.4°C
Average relative humidity	69.2%	50.1%	48.1%
During incubation period			
Total precipitation	37.6 mm	4.1 mm	0 mm
Average maximum temperature	21.1°C	17.9°C	19.5°C
Average minimum temperature	7.4°C	3°C	3.4°C
Average relative humidity	53.7%	47.2%	39.1%

691

692

693

694

Figure 1 Daily maximum temperature (solid line), minimum temperature (dotted line), and precipitation (columns) from March 1 to June 1 of 2019 to 2021, in an experimental vineyard in Prosser, Washington USA. Arrows in each panel denote the dates of the following steps: 1) Pruning, 2) Application of fungicide treatments, 3) Application of inoculation treatments; and 4) Collection of spurs for pathogen detection.

				Cytospora previous estatabase se of ILS se of IS sector	Internal T	ranscrib egion (I BLAS	oed Sp FS) STn res		Elongat	BLAS	STn re	F) sults of ecimen		
Species	Isolate	Origin	Amplification results for qPCR primers CtBTFF1 and CtBTFR1	Curated Curated specimen Identified from DNA sequence database BLASTn searches of ITS and TEF sequences	GenBank#	% Coverage	Number of gaps	% Identity	GenBank#	% Coverage	Number of gaps	% Identity	Species reported as pathogenic on grape	Reference citing species' pathogenicity
Cytospora chrysosperma	AD	Isolated from water-inoculated (control), water-treated spur in 2019	-	Cytospora chrysosperma CFCC 89619	OM976605	100	1	99.65	ON012572	100	5	94.96	Yes	Arsenious e al. (2015)
Cytospora parakantschavelii	AM	Isolated from water-inoculated (control), water-treated spur in 2019	+	Cytospora parakantschavelii MFLUCC 15-0857	OM976607	97	2	99.64	ON012574	100	1	98.55	Unknown	NA
Cytospora parasitica	WA215	Isolated from water-inoculated (control), pyraclostrobin + fluxopyroxad-treated spur in 2020	+	Cytospora parasitica MFLUCC141055a	OM976611	100	0	100	ON012578	100	1	98.17	Unknown	NA
Cytospora oarasitica	AG	Isolated from water-inoculated (control), water-treated spur in 2019	+	Cytospora parasitica MFLUCC141055a	OM976606	98	0	100	ON012573	100	1	98.53	Unknown	NA
Cytospora parasitica	CF	Isolated from water-inoculated (control), water-treated spur in 2019	+	Cytospora parasitica MFLUCC141055a	OM976608	98	0	100	ON012575	100	1	98.53	Unknown	NA
Cytospora parasitica	WA207	Isolated from water-inoculated (control), water-treated spur in 2020	+	Cytospora parasitica MFLUCC141055a	OM976609	100	0	100	ON012576	100	1	98.53	Unknown	NA
C <i>ytospora</i> species 1	Bent902	Isolated from previous survey of Washington vineyards	-	Cytospora chrysosperma CFCC 89619	OM976602	96	1	99.66	ON012569	100	2	94.60	Yes	Travadon e al.
C <i>ytospora</i> species 1	Bent903	Isolated from previous survey of Washington vineyards	+	Cytospora chrysosperma CFCC 89619	OM976603	96	1	99.66	ON012570	100	2	94.60	Yes	Travadon e al.
C <i>ytospora</i> species 2	WA209	Isolated from water-inoculated (control), water-treated spur in 2020	+	Cytospora ulmicola MFLUCC 18-1227	OM976610	100	1	99.33	ON012577	NA	N A	NA	Unknown	NA

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.21050 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Cytospora ulmicola	WA310	Isolated from water-inoculated (control), pyraclostrobin + fluxopyroxad-treated spur in 2021	+	Cytospora ulmicola MFLUCC 18-1227	OM976614	100	0	99.82	ON012581	NA	N A	NA	Unknown	NA
Cytospora vinacea	CBS1415 85	Isolated from previous survey of New Hampshire vineyards	+	Cytospora vinacea Cyt5	KX256256	100	0	100	KX256277	100	0	100	Yes	Lawrence et al. (2017)
Cytospora viticola	Kern504	Isolated from previous survey of California vineyards	+	Cytospora viticola Cyt6	OM976604	72	0	99.76	ON012571	90	0	98.02	Yes	Lawrence et al. (2017)
Cytospora viticola	Bent401	Isolated from previous survey of Washington vineyards	+	Cytospora viticola Cyt6	OM976600	70	0	100	ON012567	79	0	99.60	Yes	Lawrence et al. (2017)
Cytospora viticola	Bent901	Isolated from previous survey of Washington vineyards	+	Cytospora viticola Cyt6	OM976601	73	0	99.76	ON012568	79	1	98.03	Yes	Lawrence et al. (2017)
Cytospora viticola	WA302	Isolated from water-inoculated (control), thiophanate-methyl-treated spur in 2021	+	Cytospora viticola Cyt6	OM976612	73	1	99.76	ON012579	98	0	98.70	Yes	Lawrence et al. (2017)
Cytospora viticola	WA305	Isolated from water-inoculated (control), water-treated spur in 2021	+	Cytospora viticola Cyt6	OM976613	73	0	100	ON012580	98	1	96.97	Yes	Lawrence et al. (2017)

700