AJEV Papers in Press. Published online April 23, 2018. EV PAPERS IN PRESS • AJEV PAPERS IN PRESS AJ

1	Research Article
2	Impact of Yeast Flocculation and Biofilm Formation
3	on Yeast-Fungus Co-Adhesion
4	in a Novel Immobilization System
5 6	Jaime Moreno-García, ^{1, 2, 3} Teresa García-Martinez, ² Juan Moreno, ³ Juan Carlos Mauricio, ² Minami Ogawa, ¹ Peter Luong, ¹ and Linda F. Bisson ¹ *
7	
8 9 10 11 12	¹ Department of Viticulture and Enology, University of California, Davis, 595 Hilgard Lane, Davis, CA 95616; ² Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Cordoba, E-14071 Cordoba, Spain; and ³ Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, C3 building, Campus de Rabanales, University of Cordoba, Spain.
13	*Corresponding author (lfbisson@ucdavis.edu; fax: 530-752-0382)
14 15 16 17 18	Acknowledgments: The authors thank the Ministry of Innovation and Science (Spain) for an FPU scholarship awarded to Jaime Moreno-Garcia. The Spanish Fulbright commission is also thanked for granting a Predoctoral Research Fulbright Scholarship at the University of California, Davis, to Jaime Moreno-Garcia. This project was co-funded by the XXI Programa Propio de Investigación de la Universidad de Córdoba (Spain).
19	Manuscript submitted Aug 3, 2017, revised Jan 3, 2018, accepted Mar 21, 2018
20	Copyright © 2018 by the American Society for Enology and Viticulture. All rights reserved.
21	
22	Abstract: A novel method of yeast immobilization, called biocapsules, has been developed in which
23	cells of the yeast Saccharomyces cerevisiae become attached to the hyphae of the fungus, Penicillium
24	chrysogenum, remaining adhered following loss of viability of the fungus. Yeast immobilization
25	facilitates higher cell densities than traditional fermentation methods, improves yield and allows the
26	reutilization of the biocatalyst. Yeast cells may be adherent to each other via specific cell surface
27	molecular interactions (flocculation) or attach to surfaces (biofilm formation), and the role of these two
28	distinct mechanisms of attachment in biocapsule formation is unknown. To elucidate the influence of
29	biofilm formation versus flocculation on the yeast-fungus co-immobilization, a screening of selected
30	strains from the Viticulture and Enology Department collection at University of California, Davis was
31	carried out and their ability to flocculate and form biofilm was quantified. Eighteen yeast strains capable

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

32	of flocculation and biofilm formation were concluded from this screening. Strains displaying differential
33	capabilities in flocculation or biofilm formation plus two control strains were further evaluated for their
34	ability to specifically immobilize with P. chrysogenum. Seven strains were found to show different
35	patterns of flocculation and biofilm formation. Yeast strains able to form biofilm displayed higher rates of
36	immobilization with P. chrysogenum and formed more consistent biocapsules. In contrast, strains able to
37	flocculate developed smaller, inconsistent biocapsules. Although the size and number of biocapsules
38	formed varied by yeast strain, the total mass of biocapsules generated was similar for all strains. These
39	results shed light on parameters that influence yeast-fungus co-immobilization, which may lead to an
40	improvement of biocapsule consistency and further the field of application for this new immobilization
41	system.
40	Key words: biocapsule, fermentation, P. chrysogenum, S. cerevisiae, yeast immobilization
42	
42	Introduction
43	Introduction
43 44	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many
43 44 45	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities,
43 44 45 46	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst
43 44 45 46 47	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst (Kourkoutas et al. 2004). Various supports have been used for cell immobilization including inorganic,
43 44 45 46 47 48	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst (Kourkoutas et al. 2004). Various supports have been used for cell immobilization including inorganic, organic polymers, natural matrices as well as membrane systems (Kourkoutas et al. 2010, Nedović et al.
43 44 45 46 47 48 49	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst (Kourkoutas et al. 2004). Various supports have been used for cell immobilization including inorganic, organic polymers, natural matrices as well as membrane systems (Kourkoutas et al. 2010, Nedović et al. 2010). Natural supports derive from materials that are generally food grade with minimal or no pre-
43 44 45 46 47 48 49 50	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst (Kourkoutas et al. 2004). Various supports have been used for cell immobilization including inorganic, organic polymers, natural matrices as well as membrane systems (Kourkoutas et al. 2010, Nedović et al. 2010). Natural supports derive from materials that are generally food grade with minimal or no pre-treatment intervention such as components of fruit, wood, or sawdust (Kourkoutas et al. 2004).
43 44 45 46 47 48 49 50 51	Introduction The use of immobilized microbial systems in the production of fermented beverages offers many advantages over conventional free cell fermentations. These advantages include: high yeast cell densities, product yield improvement, lowered risk of microbial contamination and reuse of the biocatalyst (Kourkoutas et al. 2004). Various supports have been used for cell immobilization including inorganic, organic polymers, natural matrices as well as membrane systems (Kourkoutas et al. 2010, Nedović et al. 2010). Natural supports derive from materials that are generally food grade with minimal or no pretreatment intervention such as components of fruit, wood, or sawdust (Kourkoutas et al. 2004). Immobilization supports and techniques have been applied to alcoholic beverage as well as fuel ethanol

consisting of the hyphae of a filamentous fungus Penicillium chrysogenum. The hyphae of this fungus

54

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

55	serve as a platform for yeast cell attachment and adherence (Peinado et al. 2004). Biocapsules are hollow,
56	spherical bodies that constitute a natural matrix system which eliminates the cost of inert supports, since it
57	takes advantage of natural adhesion properties of yeast and filamentous fungus cell walls, minimizes
58	changes to the yeast metabolism and/or yeast viability. Additionally, biocapsules enable diffusion of
59	nutrients and end products to and from the biocapsules due to the porous structure of the filamentous
60	fungus (Peinado et al. 2004, García-Martínez et al. 2011). The rapid diffusion of carbon dioxide is an
61	important feature as it prevents bubbles from building up within the matrix and breaking the matrix,
62	which has been an issue with other types of support systems. When the yeast and fungus are co-cultivated
63	in a medium supporting hyphal growth under agitation, visible ball structures form. The yeasts are
64	attached to the hyphae within the ball structures in a stable manner. Subsequent incubation of the
65	biocapsules in media supporting yeast fermentation enables yeast growth and metabolism, thereby
66	causing the fungus to die most likely from the combination of ethanol and lack of oxygen, and the hyphal
67	structure remain as a mere support for the attached yeast cells (Peinado et al. 2006). Given their size,
68	biocapsules can be easily recovered from fermentation and the yeast retain viability and fermentative
69	capacity over multiple rounds of reuse (Peinado et al. 2004). Because of these features, biocapsules have
70	been considered a promising technique for industrial-scale fermentation purposes and have already been
71	utilized in production of white wine, sparkling wine and natural sweet wine as well as for bioethanol from
72	starch and molasses (Peinado et al. 2005, 2006, García-Martínez et al. 2012, Puig-Pujol et al. 2013,
73	García-Martínez et al. 2015).
74	Peinado et al. (2004) observed that when co-inoculated with the fungus, flor yeast strains form
75	biocapsules with relatively high consistency and mechanical resistance; defined by the biocapsule's
76	ability to withstand compression force. Flor yeasts differ from other yeast in their capacity to auto-

77 immobilize forming biofilm aggregates at liquid-air interfaces under certain conditions (Esteve-Zarzoso et

al. 2001, Aranda et al. 2002, Alexandre, 2013). Flor yeasts are used for the elaboration of Sherry wines

79	due to their ability to survive in a post- fermentation environment where fermentable carbon sources are
80	nearly exhausted and only ethanol and glycerol remain (Esteve-Zarzoso et al. 2001). Oxygen is required
81	to metabolize these carbon resources. The biofilm formation process allows the flor yeasts to access
82	regions where oxygen is rich, the wine-air interface. Zara el al. (2009) demonstrated the existence of an
83	extracellular matrix among flor yeast forming the velum. The composition of the velum is unknown.
84	The interactions of flor yeast with the fungal hyphal matrix within a biocapsule has been
85	investigated using transmission electron microscopy (García-Martínez et al. 2011). Yeasts were observed
86	to be directly attached to the cell surface of the fungus and the integrity of the biocapsules was retained
87	following fermentations (Peinado et al., 2006) enabling reuse of the capsules. García-Martínez et al.
88	(2011) established that biocapsules formed naturally, stabilized yeast fermentative activity and viability,
89	and retained integrity even after loss of viability of the fungus due to the nature of the cell-hypha contact.
90	The yeasts were able to adapt to high ethanol conditions and complete fermentations. However, previous
91	works were largely conducted with only one strain of flor yeast which may produce a spectrum of aroma
92	compounds not normally found in table wine yeast (Peinado et al., 2005, 2006, García-Martínez, 2015).
93	The main focus of this work was to study the properties of yeast strains that affect co-adhesion
94	with P. chrysogenum when forming biocapsules. Although effectiveness of biocapsule immobilization
95	made with non-flor yeast versus flor yeast has been compared (García-Martínez et al. 2012), specific
96	yeast properties such as flocculation and biofilm forming abilities and their effects on the formation of co-
97	adhesion has not been systematically investigated. In this work, we defined methodologies for assessment
98	of flocculation and biofilm forming ability and assessed the impact of these properties on biocapsule
99	formation. Known flocculent and biofilm forming yeast strains were initially screened to observe and
100	quantify flocculation and biofilm formation phenotypes and strains displaying differences in these
101	phenotypes were selected for subsequent analysis. The ability of these yeasts to form biocapsules was
102	assessed and biocapsule parameters like percentage of immobilized yeasts, number of biocapsules, total

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

103 volume, diameter, consistency and dry weight, were evaluated.

104	Materials and Methods
105	Microorganisms and growth media. Saccharomyces cerevisiae yeast strains from the
106	Department of Microbiology (University of Cordoba, Spain (UCO)) and the Department of Viticulture
107	and Enology (University of California, Davis (UCD)) collection were used in this work (Table 1). S.
108	cerevisiae G1 and UCD932 were utilized as positive and negative controls for flocculation/biofilm
109	formation, respectively. Eighteen strains were chosen from the UCD collection due to their reported
110	ability to form flocs and/or biofilms. This strain set included S. cerevisiae yeasts isolated from sherry,
111	sparkling, dry and standard wine, beer and must, as well as commercial strains (Table 1). After analyzing
112	and quantifying strain flocculation and biofilm formation phenotypes, seven strains showing different
113	flocculation/biofilm formation patterns were selected together with G1 and UCD932 control strains, for
114	co-immobilization experiments with the filamentous fungus and biocapsule formation. Cell population
115	size for strains forming flocs in liquid media are difficult to quantify under the microscope or
116	spectrophotometrically, producing false values. Therefore yeasts were pre-grown on solid media, YPD-
117	agar (1% yeast extract: 2% peptone, 2% glucose and 2% agar), and the colonies transferred to an
118	Eppendorf tube containing the liquid growth medium and agitated for 5 minutes to avoid flocs and
119	generate the inocula.

Yeasts were co-immobilized with the filamentous fungus strain *P. chrysogenum* H3 from UCO
collection. The fungus was pre-grown in a sporulation medium (SM) containing 1.7% corn meal agar,
0.1% yeast extract, 0.2% glucose and 2% agar for seven days at 28 °C.

Flocculation assessment. To assess flocculation ability, 4 x 10⁶ yeasts cell/mL were inoculated
 into 5 mL of synthetic grape juice medium "minimal must medium" (MMM) (Giudici and Kunkee 1994,
 Spiropoulos et al. 2000). The synthetic grape juice medium has the following composition: 11% (w/v) D-

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

126	fructose, 10% (w/v) D-glucose, 0.3% (w/v) L(-)malic acid, 0.3% (w/v) citric acid, 0.17% (w/v) YNB
127	(Difco Yeast Nitrogen Base) without amino acids and ammonium sulfate, 10 mg/L ergosterol and 1 mg/L
128	Tween 80. The nitrogen equivalents were 123 mg/L. The media pH were adjusted to 3.5 with KOH or
129	NaOH. The cells were then incubated at 25°C under agitation conditions, on a rotary drum for 5 days. For
130	the semi-quantitative analysis, pictures were taken at day five after the inoculum both macroscopically
131	and microscopically, the later by using the Celestron microscope. To quantify non-flocculated versus
132	flocculated yeast population sizes, cultures were filtered through a Hydrophilic Nylon membrane filter 30
133	μ m ø pore size (NY3004700 Nylon mesh filter, hydrophilic, 30 μ m, 47 mm) that allowed passage of free
134	or suspended cells but retained flocs of 6 or more cells on the filter matrix. The strategy was verified by
135	observing samples under the microscope before and after the filtration (no flocs were observed after the
136	filtration). The dry weight of the suspended yeasts and the flocculent yeasts were then measured
137	following drying to a constant weight. The filters were dried in an oven at 80 °C constant temperature
138	overnight. Non-flocculant control strains showed some adherence to the membrane and this value was
139	considered background binding of single cells or cells in aggregates of less than 6.
	considered odekground officing of single cens of cens in degregates of less than 0.
140	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into
140	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into
140 141	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol
140 141 142	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol adjusted to pH 3.5; and incubated at 21 °C for 5 days (Ishigami et al. 2004, Govender et al. 2010).
140 141 142 143	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol adjusted to pH 3.5; and incubated at 21 °C for 5 days (Ishigami et al. 2004, Govender et al. 2010). Biofilms were defined as layers on solid surfaces or across the air/liquid interface. Pictures were taken
140 141 142 143 144	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol adjusted to pH 3.5; and incubated at 21 °C for 5 days (Ishigami et al. 2004, Govender et al. 2010). Biofilms were defined as layers on solid surfaces or across the air/liquid interface. Pictures were taken macroscopically at day 5 from inoculation. For quantification, biofilm forming yeast and non-biofilm
140 141 142 143 144 145	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol adjusted to pH 3.5; and incubated at 21 °C for 5 days (Ishigami et al. 2004, Govender et al. 2010). Biofilms were defined as layers on solid surfaces or across the air/liquid interface. Pictures were taken macroscopically at day 5 from inoculation. For quantification, biofilm forming yeast and non-biofilm forming yeasts (precipitated and suspended) dry weight were measured. Biofilms were carefully extracted
140 141 142 143 144 145 146	Biofilm formation and assessment. Approximately 6 x 10 ⁷ yeasts cells/mL were inoculated into 10 mL of flor medium in a glass test tube containing 0.67% YNB without amino acids and 3% ethanol adjusted to pH 3.5; and incubated at 21 °C for 5 days (Ishigami et al. 2004, Govender et al. 2010). Biofilms were defined as layers on solid surfaces or across the air/liquid interface. Pictures were taken macroscopically at day 5 from inoculation. For quantification, biofilm forming yeast and non-biofilm forming yeasts (precipitated and suspended) dry weight were measured. Biofilms were carefully extracted with a 5 mL pipette and a spatula when they were completely covering the medium surface at day 5

149

150	Biocapsule formation and assessment of biocapsule properties. S. cerevisiae strains were pre-
151	grown for 3 days in YP + 3% glycerol medium (175 rpm, 28 °C). Yeast nitrogen base medium without
152	amino acids (Difco); containing 5 g/L gluconic acid as a carbon source and buffered to pH 7 with sodium
153	and KH ₂ PO ₄ , was used as a biocapsule formation medium (BFM). The medium used for the co-
154	immobilization is suitable for yeast to express its flocculation (Miki et al. 1982a, 1982b, Stratford 1992,
155	1996, Dengis et al. 1995, Kida et al. 1989, Soares et al. 1991, Straver et al. 1993, Soares and Seynaeve
156	2000, Verstrepen and Klis 2006, Soares, 2011) and biofilm formation phenotypes (Esteve-Zarzoso et al.
157	2001, Aranda et al. 2002, Alexandre, 2013; Zara et al. 2010).
158	Three flasks per yeast strain, each containing sterile, autoclaved 150 mL BFM, were inoculated
159	with 4 x 10 ⁶ yeast cells/mL and 4 x 10 ⁶ P. chrysogenum spores. The flasks were then shaken at 175 rpm
160	and at 28 °C for 6 days. Under these conditions, spontaneous immobilization occurred and yeast
161	biocapsules were produced. The immobilization procedure used is the same as that patented by Peinado et
162	al. (2004). The capacity of cells to be immobilized in the co-adhesion assay was determined by
163	quantifying the following parameters: number of non-immobilized yeasts, immobilized yeasts, % yeast
164	immobilized, number of biocapsules, diameter, total volume, consistency and dry weight. Yeast
165	biocapsules were separated from the medium and washed with distilled water prior to their analysis.
166	Biocapsules were counted in each of the flasks, and then the diameter size and the volume occupied by all
167	biocapsules were measured. The total volume of biocapsules formed was calculated by submerging all
168	biocapsules in water from each sample (flask) in a 50 mL graduated cylinder and measuring the
169	difference in volume before and after submersion. Biocapsule consistency was quantified by a TA.XT2
170	texture analyzer which measures the force required to compress biocapsules to a 2 mm thickness.
171	For the immobilized yeasts counting, ten biocapsules out of the total from each flask were
172	disrupted with salt to separate yeast cells from the fungal hyphae. Cells were counted and normalized to
173	the total number of biocapsules in each replicate. Biocapsules were broken by placing them into a NaCl

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

174	solution (100 mM), crushing with a pestle and mortar for 2 minutes, then transferred to a test tube and
175	vortexed for 20 seconds. As a result, a mixture of yeast cells and P. chrysogenum hypha segments was
176	obtained. Successive differential filtrations were carried out to obtain the released yeast cells for
177	quantitation: i) by using a colander to remove large biocapsule fragments; ii) a 180 μ m ø filter
178	(NY8H04700 Nylon mesh filter, hydrophobic, 180 $\mu m,$ 47mm) and iii) a 30 μm ø filter (NY3004700
179	Nylon mesh filter, hydrophilic, 30 μ m, 47 mm). Yeast population sizes (non-immobilized and
180	immobilized yeasts) were determined by direct counting using a Haemocytometer grid under the
181	microscope at 40x objective. The remaining biocapsules were used for the measurement of the dry weight
182	(80 °C constant temperature overnight) and used to obtain an average dry weight of the biocapsules.
183	Statistical analyses. Data obtained from the quantified yeast strain and biocapsule parameters
183 184	Statistical analyses. Data obtained from the quantified yeast strain and biocapsule parameters were subjected to statistical analyses through the software package Statgraphics Centurion XVI
184	were subjected to statistical analyses through the software package Statgraphics Centurion XVI
184 185	were subjected to statistical analyses through the software package Statgraphics Centurion XVI (Manugistics, Inc., Rockville, MD, USA). ANOVA and the Kruskal-Wallis tests were used to detect
184 185 186	were subjected to statistical analyses through the software package Statgraphics Centurion XVI (Manugistics, Inc., Rockville, MD, USA). ANOVA and the Kruskal-Wallis tests were used to detect parameters which quantified values depending on the yeast strain analyzed. Further, to detect correlations
184 185 186 187	were subjected to statistical analyses through the software package Statgraphics Centurion XVI (Manugistics, Inc., Rockville, MD, USA). ANOVA and the Kruskal-Wallis tests were used to detect parameters which quantified values depending on the yeast strain analyzed. Further, to detect correlations among yeast strain and biocapsule parameters, a multivariate analysis was performed and a Pearson
184 185 186 187 188	were subjected to statistical analyses through the software package Statgraphics Centurion XVI (Manugistics, Inc., Rockville, MD, USA). ANOVA and the Kruskal-Wallis tests were used to detect parameters which quantified values depending on the yeast strain analyzed. Further, to detect correlations among yeast strain and biocapsule parameters, a multivariate analysis was performed and a Pearson coefficient and <i>p</i> -value were provided for each couple of variables (Table 2). The range of the Pearson

192

Results

193 Screen of flocculation and biofilm formation phenotype. Eighteen yeast strains were selected 194 from the UCD collection to screen for flocculation and/or biofilm formation potential (Table 1). Yeast 195 were categorized visually for the formation of cell aggregates with constant mixing (Figure 1). Biofilm 196 formation capacity was evaluated by assessing the formation of a film on the surface of the tube or

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

197	growing on the side of the tube for non-agitated samples. Five of the 18 selected strains were flocculent to
198	some degree and 12 were able to form a visible biofilm, also to different degrees (Figure 1). Seven out of
199	the 18 yeast strains tested were selected for further analysis in quantification of flocculation/biofilm
200	formation and P. chrysogenum co-adhesion assays (UCD77, UCD519, UCD580, UCD804, UCD854,
201	UCD1109 and UCD1162 plus the controls G1 and UCD932) based on different flocculation/biofilm
202	patterns (see phenotypic qualification and physical aspect in Figure 1). G1, the original strain evaluated
203	by Peinado et al. (2004) for biocapsule formation displaying both flocculation and biofilm formation, and
204	UCD932, a non-flocculating strain that was not able to form a biofilm, were also included in subsequent
205	assays as controls.

206 Quantification of flocculation and biofilm formation. The set of 9 strains were evaluated in quantitative assays for assessment of flocculation ability and biofilm formation capacity (Figure 2). In 207 brief, differential filtration was used to separate free or planktonic cells from adhered cells. The separated 208 209 populations were then harvested by centrifugation and dry weight of the two populations determined. It should be noted that in the case of non-flocculating strains, a portion of cells were retained on the filter 210 211 through the filtration process. This weight was considered as background value. Yeast strain UCD854 212 originally isolated from British Ale beer displayed the highest flocculation capacity (Figure 1 and 2 a), with adhered cells comprising 39.83 out of a total dry weight of free and adhered cells of 40.96 mg, or 213 214 97.5%. UCD854 flocs could attain sizes at macroscopical dimensions. UCD580 does not form visible flocs in the qualitative assay, but showed a high biomass that was attached to the filter (Figure 2a). 215 216 UCD580 is a strong biofilm forming yeast strain. Such strains synthesize proteins essential for the biofilm 217 formation, like Flo11p, which may have caused attachment to cells to the material of the membrane filter used (Fidalgo et al. 2008). 218

UCD580 displayed the highest biofilm formation capacity among the screened yeast strains
(Figure 2b), both in terms of biofilm total dry weight and biofilm dry weight percentage, reaching up to

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

221	7.17 mg of biofilm out of 29.67 mg of total cells or 24.05%. This strain was closely followed by G1 with
222	a 6.5 mg biofilm dry weight out of a total of 31 mg (20.94%) and UCD804 with 5.17 out of 25.33 mg
223	(20.33%). Those strains, UCD580 and G1, are both flor yeasts used for Sherry wine elaboration.
224	Although G1 demonstrated the formation of flocs when grown in MMM under agitation, it shows low
225	retained biomass values. It might be that G1 flocs are less adherent than others and yeast cells were
226	disaggregated during the filtration thus yielding low retained dry weight values. UCD1109 isolated from
227	must and the Sherry wine yeast UCD519 grew better in the flor medium than the rest of the strains
228	reaching total dry weights of 52.33 and 42 mg, respectively. UCD1162 and UCD77 displayed the lowest
229	biofilm percentage values: 0.5 out of 10.33 mg (4.85%) and 1 out of 18.17 mg (5.41%), respectively.
230	Biocapsule formation. The selected yeast strains were then evaluated for biocapsule formation
250	
230	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present
231	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present
231 232	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the
231 232 233	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the biocapsules formed. Biocapsule consistency was defined as resistance to compression using a texture
231 232 233 234	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the biocapsules formed. Biocapsule consistency was defined as resistance to compression using a texture analyzer. Using the Kruskal-Wallis test all parameters excluding "biocapsule total volume", were found
231 232 233 234 235	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the biocapsules formed. Biocapsule consistency was defined as resistance to compression using a texture analyzer. Using the Kruskal-Wallis test all parameters excluding "biocapsule total volume", were found to be dependent on the strain of yeast with a <i>p</i> -value < 0.01 (biofilm formation, yeast immobilization,
231 232 233 234 235 236	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the biocapsules formed. Biocapsule consistency was defined as resistance to compression using a texture analyzer. Using the Kruskal-Wallis test all parameters excluding "biocapsule total volume", were found to be dependent on the strain of yeast with a <i>p</i> -value < 0.01 (biofilm formation, yeast immobilization, biocapsule number and consistency and dry weight) and < 0.05 (flocculation and biocapsule diameter).
231 232 233 234 235 236 237	and biocapsule properties (Figure 3). The percent of immobilized cells of the total population present during biocapsule formation was measured in addition to number, diameter, and dry weight of the biocapsules formed. Biocapsule consistency was defined as resistance to compression using a texture analyzer. Using the Kruskal-Wallis test all parameters excluding "biocapsule total volume", were found to be dependent on the strain of yeast with a <i>p</i> -value < 0.01 (biofilm formation, yeast immobilization, biocapsule number and consistency and dry weight) and < 0.05 (flocculation and biocapsule diameter). Biocapsule total volume (Figure 3d) seems to be dictated by the amount of growth of the fungus which

The highest immobilization (Figure 3a) capacity was observed for the positive control G1 flor yeast with 93.2% of the yeasts cells adhering to the filamentous fungus hyphae. Another strain of flor yeast, UCD580, showed the second highest adherence percentage with 85.0% of the cells attached to the *Penicillium* hyphae. Both strains showed high biofilm forming capacity. G1 total yeast cells in the BFM were more abundant than UCD580, 4.0 vs. 1.7•10⁷ total cells in 150 mL, respectively. The highest

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

245	number of immobilized yeast cells were found with strain UCD1109 reaching 1.1 x 108 cells, however,
246	the percentage of immobilization was lower, 83.7% (Figure 3a). It should be noted that this strain reached
247	the highest cell population under biofilm formation, though possessed relatively low biofilm formation
248	percentages and low total cell mass under the flocculation condition. UCD77, a yeast strain isolated from
249	sparkling wine production, showed the lowest immobilization efficiency (12.08%) but the highest total
250	population (2.2 x 10^8 cells) in BFM (Figure 3a). Abundant yeasts found dispersed in the medium and with
251	sparse cells attached to the fungus may indicate that the strain does not need the attachment to the fungus
252	to grow in a medium like BFM. The major carbon source in BFM is gluconic acid, which, although can
253	be utilized by S. cerevisiae as the only carbon and energy source -which seems to be the case of UCD77-,
254	many other yeast strains do not grow well on this substrate. It should be noted that UCD77 is a strain with
255	a very low ability to form biofilm, only 5.41% of the total biomass and flocculation close to the strain
256	average value $(79.28 \pm 4.53\%)$.

257 The number of biocapsules formed varied ten-fold from a low of 100 to over 1000 with the average number formed being around 360 (Figure 3b). The highest values were obtained with UCD1162 258 259 (1198 biocapsules). This value was significantly above those of all other strains. UCD1162 is 260 characterized mainly by its scarce ability to form biofilm (4.85%) and values of flocculation below average. UCD1109 also formed nearly twice the average number of biocapsules (632). UCD1162, 261 262 UCD1109, UCD854 and UCD77 formed more biocapsules and exhibited less ability to form biofilm than 263 the biofilm-forming yeast strains G1, UCD519, UCD580 and UCD804. This observation suggests that yeast biofilm formation is inversely related with the number of biocapsules formed. Furthermore, yeast 264 strains with lowest biocapsule diameters (Figure 3c) coincide with those with highest number of 265 266 biocapsules, thus indicating that there may be a correlation between "biocapsule diameter" and 267 "biocapsule number" (Figure 4) and both may be functions of the biofilm forming capacity of the cells. 268 Biocapsule total volume (Figure 3d) was not significantly different among the yeast strains. This

269	study showed that those strains with higher capacity to form biofilm produce larger but fewer biocapsules
270	than those made with yeast strains with lower capacity to form a biofilm. The yeast impacts the
271	dimensions of the biocapsules in a way that is correlated with ability to form a biofilm.
272	In addition, strains with the highest biofilm forming ability G1, UCD580 and UCD804 formed
273	biocapsules that resisted deformation in the texture assay and less resistant biocapsules were obtained by
274	immobilizing the strains with lower biofilm forming capacity UCD77, UCD854, UCD1109 and
275	UCD1162. UCD519 which shows a high ability to form a heavy but fragile biofilm (fragments detached
276	from the biofilm were observed), formed biocapsules with low consistency (similar to UCD932) (Figure
277	3e). This may indicate that in addition to the biofilm weight, other factors (i.e. fragility) also affect the
278	consistency of biocapsules formed. Similarly, heaviest biocapsules were obtained with the flor yeast G1
279	yeast strain while lightest with the non-biofilm forming UCD77 and UCD1162 (Figure 3f). The rest did
280	not differ significantly in dry weight with an average of 0.07 g.
281	After applying the Pearson test to detect correlations among yeast strain and biocapsule
281 282	After applying the Pearson test to detect correlations among yeast strain and biocapsule parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule
282	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule
282 283	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and
282 283 284	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters,
282 283 284 285	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters, the Pearson coefficients were over 0.7, indicating that a positive correlation exists for each, reaching 0.93
282 283 284 285 286	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters, the Pearson coefficients were over 0.7, indicating that a positive correlation exists for each, reaching 0.93 in the case of "biocapsule consistency" and "yeasts forming biofilm (%)". Bigger and more consistent
282 283 284 285 286 287	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters, the Pearson coefficients were over 0.7, indicating that a positive correlation exists for each, reaching 0.93 in the case of "biocapsule consistency" and "yeasts forming biofilm (%)". Bigger and more consistent biocapsules are obtained by immobilizing biofilm forming yeast strains. This result is consistent with the
282 283 284 285 286 287 288	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters, the Pearson coefficients were over 0.7, indicating that a positive correlation exists for each, reaching 0.93 in the case of "biocapsule consistency" and "yeasts forming biofilm (%)". Bigger and more consistent biocapsules are obtained by immobilizing biofilm forming yeast strains. This result is consistent with the observation made by Peinado et al. (2004) who proposed flor yeasts as better candidates to make
282 283 284 285 286 287 288 289	parameters, lowest <i>p</i> -values were obtained among the following parameter couples: "biocapsule diameter" - "yeast forming biofilm (%)", "biocapsule consistency" - "biofilm yeast weight" and "biocapsule consistency" - "yeasts forming biofilm (%)" (Table 2). For all these couples of parameters, the Pearson coefficients were over 0.7, indicating that a positive correlation exists for each, reaching 0.93 in the case of "biocapsule consistency" and "yeasts forming biofilm (%)". Bigger and more consistent biocapsules are obtained by immobilizing biofilm forming yeast strains. This result is consistent with the observation made by Peinado et al. (2004) who proposed flor yeasts as better candidates to make biocapsules (in terms of consistency) than those without the ability to form biofilm. On the other hand,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

293 and the amount of yeasts that did not make biofilm in the flor medium (Table 2) may indicate that the 294 yeast's ability to form biofilm and the number of yeast immobilized in biocapsules are negatively 295 correlated.

296 Biocapsule dry weight (Figure 3f) is both positively correlated with the biofilm yeast weight plus the weight of non-biofilm forming yeasts. Not surprisingly, this indicates that biocapsule weight is 297 298 positively correlated with the total amount of yeast growing under the biofilm forming conditions. 299 However, it should be considered that: i) the *p*-value for "biofilm yeast weight" was lower than that for 300 "non-biofilm yeast weight", and ii) the "biocapsule dry weight" is also positively correlated with a p-301 value < 0.005 to the percentage of yeast forming biofilm, meaning that biofilm formation positively 302 affects the weight of the biocapsules. The same was true for the percentage of yeasts immobilized within

biocapsules. 303

304 Lastly, the Pearson test also showed that the number of biocapsules obtained at day 6 of the fungus-veast co-inoculation is negatively correlated to biofilm formation (as previously mentioned) but 305 306 positively correlated in a significant level to the yeast capacity to flocculate under agitation.

307

Discussion

Flor yeast strain G1 was shown to form biocapsules that display fermentative capacity and retain 308 309 yeast cell viability (García-Martínez et al. 2012). This strain both flocculates, forms a velum biofilm 310 during sherry wine production. It is unclear if any or all of these properties impact the co-adhesion to fungal hyphae. To determine what cellular properties were important in biocapsule formation and 311 312 functionality, we screened a set of wine/beer yeast strains for flocculation and biofilm phenotypes and 313 then evaluated a subset for biocapsule formation. It was shown that these yeasts immobilize differently 314 with the filamentous fungus P. chrysogenum. Values from all parameters evaluated differed between strains with a *p*-value < 0.05, with the exception of "total volume of biocapsules". 315

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

316	Biofilm formation is defined as a biological process where planktonically growing
317	microorganisms grow at a liquid-air interface, which is the case for flor or velum; or on a solid substrate
318	under the flow of a liquid, like the case of filamentous fungus hyphae surface (Kuchin et al. 2002,
319	Ishigami et al. 2006, Fidalgo et al. 2008). This means that flor yeast strains capable of biofilm formation,
320	can further extend a film on a solid substrate which can be the hyphae surface of filamentous fungus. It
321	must also be considered that the matrix formed by the filamentous fungus can trap air during agitation.
322	Accordingly, flor yeast may encounter an environment in the hyphae matrix similar to that during
323	biological aging (i.e. Sherry wine elaboration) where oxygen is necessary to metabolize the carbon source
324	present in the medium. Both conditions promote the onset of biofilm formation in these yeast. Once the
325	biofilm forming yeasts are attached to the hyphae, they can form an extracellular matrix as previously
326	revealed in the velum formed by some strains (Zara et al. 2009). This extracellular matrix was later
327	detected in the biocapsule walls by Peinado et al. (2006) who observed this connection of yeasts to
328	hyphae. The ability of flor yeasts to form this fibrillary material, which until now is of unknown
329	composition, may be encompassing the biocapsules and therefore explain the larger size of the
330	biocapsules.

331 Biocapsule dry weight and percentage of yeasts immobilized were both directly correlated with the biofilm yeast weight and the weight of the non-biofilm forming yeasts. Nonetheless, they were also 332 positively correlated with a p-value < 0.005 to the percentage of yeast forming biofilm, thus the formation 333 334 of the biofilm positively affected the weight of the biocapsules. The number and diameter of the 335 biocapsules appear inversely correlated: the more abundant the number of biocapsules, the smaller the 336 biocapsule diameter. Consequently, the total volume remains consistent (Figure 3d). It was also observed 337 that the smaller biocapsules in larger quantities were formed with the non-biofilm forming strains while 338 biofilm forming yeasts developed biocapsules that are larger in diameter but smaller in quantity (Figure 339 4). This fact is further confirmed by a negative significant Pearson coefficient.

14

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

340	Unlike biofilm formation, the yeast's ability to flocculate allows for a greater number of
341	biocapsules formed but smaller average diameter of each biocapsule. Flocculation and biofilm are two
342	different types of cell aggregation. Flocculation is a homotypic process, involving only one type of cell in
343	the interaction (Stratford 1992, Stewart 2009) and all cells have components on their cell surfaces (lectins
344	and α -mannans) that participate in the adhesion reaction (Miki et al. 1982a). Our data suggest that yeast
345	cell self-adhesion may compete with adhesion to the hyphae of the fungus (non-self adhesion) -more
346	yeast cell surface used for adhesion to other yeast cells rather than to the fungus and consequently not
347	letting the hyphae grow in the same biocapsule. Thus, small biocapsules resulting from use of flocculant
348	yeasts should proportionally contain less P. chrysogenum hyphae. In contrast, cell surface changes
349	associated with biofilm formation are to enable attachment to a wide array of surfaces and confining the
350	population to the surface-air interface. The stronger correlation of biofilm forming capacity to adhesion to
351	the fungus suggests that factors driving cell-cell self-interactions may block interaction with the fungal
352	hyphae.

Biocapsule consistency was shown to be yeast strain dependent (Figure 3e). This parameter also 353 354 strongly relates with the yeasts' ability to form biofilm, with Pearson coefficients of over 0.7 for the correlations "Biocapsule consistency"-"Biofilm yeast weight" and "Biocapsule consistency"-"Yeast 355 forming biofilm (%)". High biofilm weight yeast showing a low biocapsule consistency (UCD519) 356 357 indicates that there may be other factors in addition to biofilm weight that influence the consistency of the 358 biocapsules, such as biofilm fragility. Biocapsule consistency is also inversely correlated by the capacity 359 of flocculation. The yeast's competence to form biofilm, allowing it to strongly attach to the fungus 360 hyphae and produce extracellular polymers that facilitate matrix formation, may explain the strong 361 resistance conferred by the biocapsules to withstand the forces applied without breaking. Contrary, yeasts 362 that flocculate congregate with each other and form flocs that can potentially interfere with attachment to 363 the fungus and make less deformable biocapsules.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

364	Yeast ability to co-adhere with the filamentous fungus P. chrysogenum may be due to multiple
365	factors. The biocapsule matrix can be considered a place that entraps yeast cells in co-culture and allows
366	air to be stored in their matrix gaps. This matrix is beneficial for yeast and makes it a suitable
367	environment to oxidatively metabolize the non-fermentable carbon source and gluconic acid when
368	attached to the hyphae. Further, similar to flocculation, the main purpose of yeast-hyphae association
369	could be a community mechanism for survival: the external cells from the floc structure can directly
370	protect the internal cells against harmful environments by physically shielding them. Flocculent yeasts
371	when exposed to several negative conditions such as nutrients starvation, ethanol toxicity, cold-shock, and
372	osmotic stress induce the onset of flocculation (Gibson et al. 2007). Thus, biocapsule formation provide
373	similar protections to floc formation and make it possible for long-term survival of a cellular community
374	of yeast cells in an unfavorable environment. Another hypothetical reason is that yeast and fungus
375	establish a symbiotic relationship because the yeast (which catabolize gluconic acid less easily than the
376	fungus) may obtain gluconic acid subproducts from the fungus that are easier to utilize as a carbon and
377	energy source. Peinado et al. (2006) observed through transmission electron microscopy, within zones of
378	contact with hyphae, vesicular structures are located near the contact zone in the cytoplasm of yeast cells,
379	thus providing a polarized aspect to these cells. Cross-feeding may be a strong selective pressure for the
380	communal association of the cells.

Even both, *S. cerevisiae* and *P. chrysogenum* can utilize gluconic acid as a carbon source and incorporate it to the carbohydrate acid metabolism, *S. cerevisiae* catabolizes it in a later stage. In the case of flor yeasts, it has been observed that gluconic acid in contents lower than 5 g/L is assimilated during the aerobic biological aging process of sherry wines (Cortés et al. 1999) where consumption is initiated after 18 days (Peinado et al. 2003). This delayed time may occur because the protein that catalyzes the phosphorylation, the cytoplasmic putative gluconokinase *YDR248C*, is up-regulated in amino acid starvation (Gasch et al. 2000). Aversely, Schmitz et al. (2013) reported that *P. chrysogenum* has higher

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

388	uptake rates for gluconate than for glucose. Hence, during the biocapsule formation, the first 6 days after
389	the yeast-fungus co-inocculation, YDR248C may not yet be present, and yeasts are forced to establish a
390	symbiotic relationship with the fungus to obtain an alternate carbon source from the fungal gluconic acid
391	degradation.
392	Conclusion

S. cerevisiae immobilization in the filamentous fungus *P. chrysogenum* and the consequent
 formation of biocapsules was found to depend on the yeast ability to flocculate and aggregate into
 biofilms. Biofilm forming yeast strains had higher rates of immobilization and formed larger, more
 consistent biocapsules, while strains able to flocculate formed more abundant biocapsules that were
 smaller in size and less uniform.
 Understanding the relationship of flocculation and biofilm formation with the yeast

immobilization in *P. chrysogenum* is not only important in terms of potential industrial application, but also for our understanding of possible evolutionary mechanisms linked to physical interactions between different organisms in shared ecological niches. The way in which mixed species communities control their cell-cell interactions in complex habitats may provide novel insights into ecosystem evolution. Such physical associations can increase the probability of metabolic exchange between cells of different species, and support symbiotic associations as conditioned by the selective pressures of various fermentation environments.

406

Literature Cited

- Alexandre H. 2013. Flor yeasts of *Saccharomyces cerevisiae*-Their ecology, genetics and metabolism. Int
 J Food Microbiol 167:269-275.
- 409 Aranda A, Querol A and del Olmo MI. 2002. Correlation between acetaldehyde and ethanol resistance
 410 and expression of *HSP* genes in yeast strains isolated during the biological aging of sherry wines.
 411 Arch Microbiol 177:304-312.
- 412 Cortés MB, Moreno J, Zea L, Moyano L and Medina M. 1999. Biological aging of sherry wines with high

413 414	content in gluconic acid. <i>In</i> Proceedings, V National Congress of Enologists. pp. 141-144. Extremadura Enologists Association, Mérida, Spain.
415 416	Dengis PB, Nelissen LR and Rouxhet PG. 1995. Mechanisms of yeast flocculation: comparison of top- and bottom-fermenting strains. Appl Environ Microbiol 61:718-728.
417 418 419	Esteve-Zarzoso B, Peris-Torán MJ, García-Maiquez E, Uruburu F and Querol A. 2001. Yeast population dynamics during the fermentation and biological aging of sherry wines. Appl Environ Microbiol 67:2056-2061.
420 421	Fidalgo M, Barrales RR and Jimenez J. 2008. Coding repeat instability in the <i>FLO11</i> gene of <i>Saccharomyces</i> yeasts. Yeast 12:879-889.
422 423 424	García-Martínez T, Moreno J, Mauricio JC and Peinado R. 2015. Natural sweet wine production by repeated use of yeast cells immobilized on <i>Penicillium chrysogenum</i> . LWT Food Sci Technol 61:503-509.
425 426 427	García-Martínez T, Peinado RA, Moreno J, García-García I and Mauricio JC. 2011. Co-culture of <i>Penicillium chrysogenum</i> and <i>Saccharomyces cerevisiae</i> leading to the immobilization of yeast. J Chem Technol Biotech 86:812–817.
428 429 430	García-Martínez T, Puig-Pujol A, Peinado RA. Moreno J and Mauricio JC. 2012. Potential use of wine yeasts immobilized on <i>Penicillium chrysogenum</i> for ethanol production. J Chem Technol Biotechnol 87:351-359.
431 432 433	Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D and Brown PO. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241-57.
434 435	Gibson BR, Lawrence SJ, Leclaire JP, Powell CD and Smart KA. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535-569.
436 437	Giudici P and Kunkee RE. 1994. The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts. Am J Enol Vitic 45:107-112.
438 439	Govender P, Bester M and Bauer FF. 2010. <i>FLO</i> gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931-45.
440 441 442	Ishigami M, Nakagawa Y, Hayakawa M and Iimura Y. 2004. <i>FLO11</i> is essential for flor formation caused by the C-terminal deletion of <i>NRG1</i> in <i>Saccharomyces cerevisiae</i> . FEMS Microbiol Lett 237:425-30.
443 444 445	Ishigami M, Nakagawa Y, Hayakawa M and Iimura Y. 2006. <i>FLO11</i> is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem 70:660-666.
446 447	Kida K, Yamadaki M, Asano SI, Nakata T and Sonoda Y. 1989. The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast. J Biosci Bioeng 68:107-111.

448	Kourkoutas Y, Bekatorou A, Banat IM, Roger M and Koutinas AA. 2004. Immobilization technologies
449	and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377-
450	397.
451 452 453 454	Kourkoutas Y, Manojlović V and Nedović VA. 2010. Immobilization of microbial cells for alcoholic and malolactic fermentation of wine and cider. <i>In</i> : Encapsulation Technologies for Active Food Ingredients and Food Processing. VA Nedović and NJ Zuidam NJ (eds), pp. 327-343. Springer, London, United Kingdom.
455 456 457	Kuchin S, Vyas VK and Carlson M. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate <i>FLO11</i> , haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994-4000.
458 459	Miki BL, Poon NH, James AP and Seligy VL. 1982a. Possible mechanism for flocculation interactions governed by gene <i>FLO1</i> in <i>Saccharomyces cerevisiae</i> . J Bacteriol 150:878-89.
460	Miki BL, Poon NH and Seligy VL. 1982b. Repression and induction of flocculation interactions in
461	Saccharomyces cerevisiae. J Bacteriol 150:890-899.
462	Nedović VA, Manojlovic V, Bugarski B and Willaert R. 2010. State of the art in
463	immobilized/encapsulated cell technology in fermentation processes. <i>In</i> Encapsulation
464	Technologies for Active Food Ingredients and Food Processing. VA Nedović and NJ Zuidam NJ
465	(eds), pp. 119-146. Springer, London, United Kingdom.
466	Peinado RA, Mauricio JC, Moreno J, Ortega JM, Medina M, Mérida J, Millán MC, Mayén M, Zea L,
467	Moyano ML, Valero E, Muñoz D, López A and Maestre O. 2004. Method of obtaining yeast
468	biocapsules, biocapsules thus obtained and applications of same. World International Property
469	Organization. Publication nr: WO2004029240 A1.
470 471 472	Peinado RA, Moreno JJ, Ortega JM and Mauricio JC. 2003. Effect of gluconic acid consumption during simulation of biological aging of sherry wines by a flor yeast strain on the final volatile compounds. J Agri. Food Chem 51:6198-203.
473 474	Peinado RA, Moreno JJ, Maestre O and Mauricio JC. 2005. Use of a novel immobilization yeast system for winemaking. Biotechnol Lett 27:1421-1424.
475 476	Peinado RA, Moreno JJ, Villalba JM, González-Reyes JA, Ortega JM and Mauricio JC. 2006. Yeast biocapsules: a new immobilization method and their applications. Enz Microb Technol 40:79-84.
477	Puig-Pujol A, Bertran E, García-Martínez T, Capdevila F, Mínguez S and Mauricio JC. 2013. Application
478	of a new organic yeast immobilization method for sparkling wine production. Am J Enol Vitic
479	64:386-394.
480	Schmitz K, Peter V, Meinert S, Kornfeld G, Hardiman T, Wiechert W and Noack S. 2013. Simultaneous
481	utilization of glucose and gluconate in <i>Penicillium chrysogenum</i> during overflow metabolism.
482	Biotechnol Bioeng 110:3235-3243.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

- 483 Soares EV. 2011. Flocculation in *Saccharomyces cerevisiae*: a review. J Appl Microbiol 110:1-18.
- 484 Soares EV and Seynaeve J. 2000. Induction of flocculation of brewer's yeast strains of *Saccharomyces* 485 *cerevisiae* by changing the calcium concentration and pH of culture medium. Biotechnol Lett
 486 22:1827-1832.
- 487 Soares EV, Teixeira JA and Mota M. 1991. Influence of aeration and glucose concentration in the
 488 flocculation of *Saccharomyces cerevisiae*. Biotechnol Lett 13:207-212.
- 489 Spiropoulos A and Bisson LF. 2000. *MET17* and hydrogen sulfide formation in *Saccharomyces* 490 *cerevisiae*. Appl Environ Microbiol 66:4421-4426.
- 491 Stewart GG. 2009. The Horace Brown Medal lecture: forty years of brewing research. J Inst Brew 115:3492 29.
- 493 Stratford M. 1992. Yeast flocculation: a new perspective. Adv Microb Physiol 33:2-71.
- 494 Stratford M. 1996. Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiol
 495 Lett 136:13-18.
- 496 Straver MH, Aar P, Smit G and Kijne JW. 1993. Determinants of flocculence of brewer's yeast during
 497 fermentation in wort. Yeast 9:527-532.
- Verstrepen KJ and Klis FM. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol
 60:5-15
- Zara G, Zara S, Pinna C, Marceddu S and Budroni M. 2009. *FLO11* gene length and transcriptional level
 affect biofilm-forming ability of wild flor strains of *Saccharomyces cerevisiae*. Microbiology
 155:3838-3846.
- Zara S, Gross MK, Zara G, Budroni M and Bakalinsky AT. 2010. Ethanol-independent biofilm formation
 by a flor wine yeast strain of *Saccharomyces cerevisiae*. Appl Environ Microbiol 76:4089-4091.

505

506

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Strain	Strain details	Collection
G1 (positive control)	Saccharomyces cerevisiae (Sherry wine (Spain))	UCO
932 (negative control)	Saccharomyces cerevisiae	UCD
77	Saccharomyces cerevisiae (wine, champagne)	UCD
519	Saccharomyces cerevisiae (Sherry wine)	UCD
580	Saccharomyces cerevisiae (Sherry wine)	UCD
595	Saccharomyces cerevisiae (commercial dry wine yeast)	UCD
661	Saccharomyces cerevisiae race bayanus (wine, champagne)	UCD
662	Saccharomyces cerevisiae race bayanus (wine, champagne)	UCD
726	Saccharomyces cerevisiae (wine)	UCD
775	Saccharomyces cerevisiae (wine, Champagne)	UCD
777	<i>Saccharomyces cerevisiae</i> race <i>bayanus</i> (commercial wine yeast)	UCD
804	Saccharomyces cerevisiae (commercial wine yeast, champagne)	UCD
814	<i>Saccharomyces cerevisiae</i> race <i>bayanus</i> (commercial wine yeast)	UCD
854	Saccharomyces cerevisiae (Ale, England)	UCD
1109	Saccharomyces cerevisiae (must)	UCD
1162	Saccharomyces cerevisiae (unknown)	UCD
2034	Saccharomyces cerevisiae (Commercial yeast)	UCD
2547	Saccharomyces cerevisiae (Wine Spain)	UCD
2865 B11 or BA11	Saccharomyces cerevisiae	UCD
Original 594 (prise di mousse)	Saccharomyces cerevisiae	UCD
Н3	Penicilliun chrysogenum	UCO

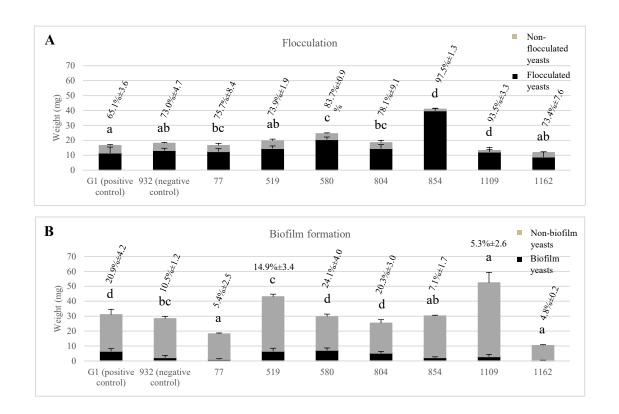
 Table 1 Yeast and fungus strains used in the experiment.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

		Floc weight	Non floc yeast weight	Yeasts floculated (%)	Biofilm yeast weight	Non biofilm yeast weight (mg)	Yeasts forming biofilm (%)
Free yeasts (10 ⁶ cells in 150 mL)	Pearson coefficient	-0.1397	0.2148	-0.1749	-0.3451	-0.2548	-0.3298
	p-value	0.4871	0.2820	0.3829	0.0779	0.1996	0.0930
Immobilized yeasts (10 ⁶ cells/mL)	Pearson coefficient	-0.0905	-0.2767	0.2744	0.1185	0.6849	-0.1088
	p-value	0.6534	0.1623	0.1660	0.5561	0.0001	0.5890
Yeasts immobilized (%)	Pearson coefficient	-0.0222	-0.0570	0.0717	0.5222	0.4626	0.4387
	p-value	0.9123	0.7775	0.7222	0.0052	0.0151	0.0221
Biocapsule number	Pearson coefficient	-0.2788	-0.4024	0.0601	-0.6190	-0.1988	-0.6501
1	p-value	0.1591	0.0375	0.7658	0.0006	0.3202	0.0002
Biocapsule total volume (mL)	Pearson coefficient	0.1646	-0.1870	0.2973	-0.2006	-0.2406	-0.1532
	p-value	0.4119	0.3503	0.1320	0.3157	0.2267	0.4456
Biocapsule diameter (mm)	Pearson coefficient	0.1991	0.4021	-0.0859	0.5613	-0.0764	0.7197
	p-value	0.3193	0.0376	0.6701	0.0023	0.7048	0.0000
Biocapsule consistency	Pearson coefficient	0.0178	0.4274	-0.2290	0.7581	-0.0687	0.9288
-	p-value	0.9297	0.0262	0.2506	0.0000	0.7335	0.0000
Biocapsule dry weight	Pearson coefficient	0.3166	0.0412	0.1399	0.6095	0.5249	0.5285
	p-value	0.1076	0.8383	0.4865	0.0007	0.0049	0.0046

 Table 2 Yeast and biocapsule parameters correlation.


*Pearson coefficient and *p*-value were provided for each couple of parameters. Correlations with a *p*-value lower than 0.05 are shown in bold.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Strain	Strain details	Flocculation	Biofilm formation	Biocapsule formation	Strain	Strain details	Flocculation	Biofilm formation	Biocapsule formation
G1 (positive control)	S. cerevisiae (Sherry wine (Spain))		-	0	UCD814	S. cerevisiae race bayanus (commercial wine yeast)		·	
UCD932 (negative control)	S. cerevisiae	33. 6 4 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			UCD854	S. cerevisiae (Ale, England)			
UCD77	S. cerevisiae (wine, champagne)			\bigcirc	UCD1109	S. cerevisiae (must)		-	
UCD519	S. cerevisiae (Sherry wine)	· · · · · · · · · · · · · · · · · · ·			UCD1162	<i>S. cervisiae</i> (possible flor yeast)	•		6
UCD580	S. cerevisiae (Sherry wine)				UCD2034	S. cerevisiae (Commercial yeast)	3,		
UCD595	<i>S.cerevisiae</i> (commercial dry wine yeast)	0.00			UCD2547	S. cerevisiae (Wine Spain)			
UCD661	<i>S. cerevisiae</i> race bayanus (wine, champagne)	· · · · · · · · · · · · · · · · · · ·			UCD2865 B11 or BA11	S. cerevisiae			
UCD662	<i>S. cerevisiae</i> race bayanus (wine, champagne)				Original 594 (prise di mousse)	S. cerevisiae			
UCD726	S. cerevisiae (wine)								
UCD775	S. cerevisiae (wine, Champagne)		-						
UCD777	S. cerevisiae race bayanus (commercial wine yeast)		-						
UCD804	S. cerevisiae (commercial wine yeast, champagne)			0					

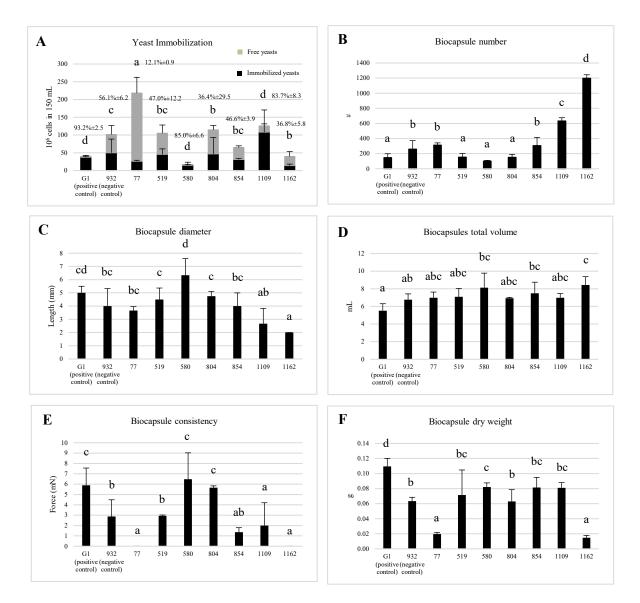

Figure 1 Results from the flocculation, biofilm and biocapsule formation semi-quantitative assays of the yeast strains. Symbols -, +, ++ and +++; indicate the phenotype qualification. Biocapsules were only made with those yeast strains showing different flocculation/biofilm formation patterns.

Figure 2 Yeast strains flocculation (**A**) and biofilm formation (**B**). In **A**, black bars represent yeasts flocculated, in **B**, biofilm yeasts. Grey bars represent yeasts non-flocculated and non-biofilm yeasts in **A** and **B**, respectively. \pm indicates standard deviations. Different letters indicate different homogeneous groups considering percentages of flocculation and biofilm formation among the strains with significant differences at 0.05 level according to the F-test. The alphabetical order indicates an increasing value.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.17067

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Figure 3 Yeast strains biocapsule related parameters. In **A**, black bars represent yeasts immobilized in biocapsules. Grey bars represent yeasts non-immobilized or free yeasts. In **E**, strains with no values, UCD77 and UCD1162, showed a consistency below the measurable range. \pm indicates standard deviations. Different letters indicate different homogeneous groups considering different parameters among the strains with significant differences at 0.05 level according to the F-test. The alphabetical order indicates an increasing value.

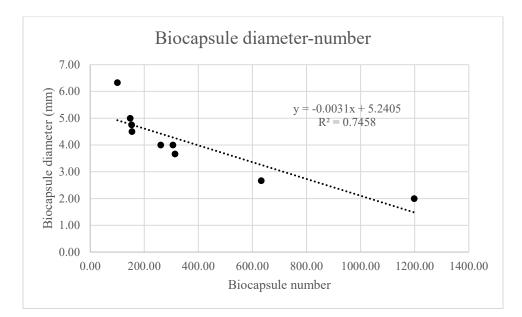


Figure 4 Linear regression among the "biocapsule diameter" and "biocapsule number" parameters.