AJEV Papers in Press. Published online January 4, 2023.

AJEV PAPERS IN PRESS • AJEV PAPERS IN PRESS

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

1	Research Article
2	Consumer Hedonic Testing and Chemical Analysis of Iowa
3	Wines Made from Five Cold-hardy Interspecific Grape
4	Varieties (<i>Vitis spp</i>)
5	
6	Erin L. Norton, ^{1,2} * Joey N. Talbert, ¹ and Gavin L. Sacks ³
7	
8	Author affiliation(s): ¹ Department of Food Science and Human Nutrition, Iowa State University,
9 10	536 Farm House Lane, Ames, IA, 50011; ² Midwest Grape and Wine Industry Institute, Iowa State University, 536 Farm House Lane, Ames, IA, 50011; ³ Department of Food Science,
11	Cornell University, 411 Tower Road, Ithaca, NY, 14853.
12	Comen Oniversity, 411 Tower Road, Infaca, 101, 14655.
13	*Corresponding author (elnorton@iastate.edu; tel: 1-515-294-1555)
14	
15	Acknowledgments: Funding for this project was provided by the Iowa Department of Agriculture
16	and Land Stewardship through the Specialty Crop Block Grant Program. The authors thank the
17	staff of the Midwest Grape and Wine Industry Institute for their help in wine selection and
18	procurement, chemical analysis and the consumer liking studies; Dr. Aude Watrelot for help with
19	wine selection and Watrelot's lab for the analysis of tannin and iron-reactive phenolics content in
20	wines; Leah Reever of the Sensory Evaluation Center for recruiting consumer participants;
21	Audrey McCombs for statistical consultation, both the Protein Facility and the W.M. Keck
22	Metabolomics Research Laboratory for protein analysis.
23	Manager interstantists 1 Fab 22, 2022 and at 1 Mars 4, 2022
24 25	Manuscript submitted Feb 23, 2022, accepted Nov 4, 2022
23 26	This is an open access article distributed under the CC BY license
20 27	(https://creativecommons.org/licenses/by/4.0/).
28	
29	By downloading and/or receiving this article, you agree to the Disclaimer of Warranties and
30	Liability. The full statement of the Disclaimers is available at
31	http://www.ajevonline.org/content/proprietary-rights-notice-ajev-online. If you do not agree to
32	the Disclaimers, do not download and/or accept this article.
33	
34	Key words: consumer behavior, chemical composition, cluster analysis, interspecific hybrids
35	
36	Background and goals. Research into wines made from cold-hardy interspecific hybrids, which
37	have been integral for the establishment of a grape and wine industry through the Upper
38	Midwest, has produced few reports investigating chemical composition and consumer
39	perception. The goals of this project were to i) survey Iowa wine industry members on varieties

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

40	they thought were best suited for premium wine production and ii) measure consumer hedonic
41	scores and chemical composition of 20 commercial Midwest wines made from five varieties,
42	selected based on the initial survey. Cluster analysis was performed on the sensory data, and
43	correlation of consumer segments with wine composition evaluated.
44	Methods and key findings. A survey of Iowa industry members identified five cold-hardy
45	interspecific cultivars as growing best in the state: Brianna, Edelweiss, La Crescent, Marquette,
46	and Frontenac. Chemical analyses of 20 commercial wines revealed that titratable acidity weas
47	generally higher than Vitis vinifera wines. The highest protein concentrations were observed in
48	La Crescent and Frontenac wines. Consumers were clustered into five groups based on liking
49	scores and the two largest segments showed a preference for wines with higher residual sugar.
50	Conclusions and significance. This is the first survey of chemical composition and consumer
51	liking for Midwestern wines produced from cold-hardy interspecific hybrids. The high protein
52	concentrations observed in red and white wines are notable as these may affect tannin extraction
53	and haze formation, respectively. Although average Iowa consumers prefer wines with
54	substantial residual sugar (>20g/L), there is evidence of multiple consumer segments with
55	different residual sugar and varietal preferences.
56	Introduction
56	
57	Due to their cold winters, Iowa and other Upper Midwest states (MN, ND, NE, SD, WI)

but to their cold winters, fowa and other Opper Midwest states (MIN, ND, NE, 3D, WI)
have no commercial plantings of *V. vinifera* cultivars. Commercial grape production in these and
other cold climates, relies on interspecific cultivars (*Vitis spp.) including V. labruscana* (also
called "native", e.g., Concord), French-American hybrids (e.g. Maréchal Foch) and newer coldhardy cultivars (e.g. Marquette).(Atucha et al. 2018, Pedneault et al. 2013) Although reports

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

62	exist on the composition of commercial wines produced from V. vinifera grapes (and to a lesser
63	extent, French-American hybrids) there are no surveys on the composition of commercial
64	varietal wines produced from cold-hardy cultivars. Several authors have reported on basic wine
65	chemistry as well as phenolic and volatile content of cold-hardy varietal wines (Nicolle et al.
66	2019, Norton et al. 2020, Rice et al. 2017, Slegers et al. 2015) but these previous studies have
67	relied on wines produced in research settings rather commercial wines. Furthermore, there are
68	few studies of consumer preference utilizing interspecific hybrid wines and no published
69	research of consumer liking of Midwestern US produced wines. Reports in the literature
70	concerning consumer preferences/attitudes to interspecific hybrid wines include one of consumer
71	preference for New York State Seyval blanc (Berkey et al. 2011), one of consumer stigma
72	towards Colorado produced Chambourcin wine (Costanigro et al. 2021) and one from Brazil
73	investigating consumer acceptability of wines made from several Brazilian bred interspecific
74	hybrid cultivars.(Biasoto et al. 2014)
75	There have also been no reports of correlating interspecific hybrid wine chemical
76	composition with consumer hedonic scores, as has been reported for vinifera wines.(Lund et al.
77	2009, Sáenz-Navajas et al. 2015, Wang et al. 2016) For example, a recent study on Australian
78	wines produced from non-traditional varieties found that consumers could be clustered into three
79	segments with distinct preferences for wine.(Mezei et al. 2021) Overall preference and segment
80	preferences were then correlated with wine chemistry. The existence of consumer segments for
81	wines produced from cold-hardy interspecific hybrids and/or commercial Midwestern US
82	wineries has not been explored.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

83	In this research, Iowa grape and wine industry members were surveyed to determine the
84	cultivars that grew best and were best representative of the state. Based on these results, a
85	representative sample of 20 commercial wines made from the five interspecific grape varieties
86	were selected for chemical analysis and hedonic sensory evaluations. Consumers were then
87	clustered to evaluate if variety or composition were correlated with hedonic scores for different
88	consumer segments.
89	Materials and Methods
90	Industry Survey. A survey was sent by email to Iowa grape and wine industry members
91	in September 2019, to gather information about cultivar plantings, wine production and general
92	comments about the idea of an Iowa Signature wine. The survey was open for two months, with
93	several reminder emails sent to ask for participation. Questions and results are provided in Table
94	1 and Table S1. This survey was approved for human subjects participation by the Institutional
95	Review Board at Iowa State University.
96	Wine Selection. Based on the industry survey results, five wine varieties (white: Brianna,
97	Edelweiss, La Crescent; red: Marquette, Frontenac) were selected as representative of the grapes
98	and wines grown and produced by the Iowa grape and wine industry. Fifteen commercially
99	available wines of each variety were purchased and tasted blindly by five wine professionals that
100	have previously experience tasting these hybrid varieties. These wines were narrowed to four
101	wines of each variety (for a total of twenty wines) that would be chemically analyzed and used
102	for the consumer sensory evaluation portion of the study. A variety of styles (e.g., dry vs. sweet,
103	sparkling vs. still) were chosen to expose consumers to a broad selection of Iowa wines. Wines

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

were stored at room temperature in the dark for approximately 2 months until the consumer
 sensory evaluation was performed.

Chemical Analysis. Chemical analysis was performed on all 20 wines that were used in 106 107 the consumer sensory evaluation. All measurements were performed in duplicate. Residual sugar (RS) and acetic acid (AA) were measured using enzymatic assays (Megazyme, Ireland). 108 Percent alcohol (% alc.) was measured by near infrared spectroscopy on an Alex-500 (Anton-109 110 Paar, Graz, Austria). pH was measured using an Orion 2-Star benchtop pH meter (ThermoFisher Scientific, Waltham, MA) and titratable acidity (TA) was measured using a Titrino plus 111 automatic titrator (Metrohm, Riverview, FL). Glycerol was measured by an HPLC-RID method 112 previously documented.(Savits 2014) Tannin and total Iron-Reactive Phenolics (IRP) were 113 measured by the Adams-Harbertson Assay previously published.(Heredia et al. 2006) Protein 114 was measured using an ethanol precipitation, acid hydrolysis, amino acid quantification method 115 modified from a recent report.(Kassara et al. 2022) Following hydrolysis, the resulting amino 116 acids were derivatized using the EZFaast kit (Phenomenex, Torrance, CA) according to 117 118 manufacturers instructions, and validated to the manufacturer's standards. Sugar-related wine styles were assigned to the wines based on their residual sugar in the 119 following way: dry (<10g/L), off-dry (10-19.9g/L), semi-sweet (20-75 g/L), sweet (>75 g/L). 120 Consumer Sensory Evaluation. Untrained consumer participants were recruited 121 through Iowa State University email lists by the Sensory Evaluation Center (Iowa State 122 University, Department of Food Science & Human Nutrition). Inclusion criteria required that 123 participants (1) were 21 years old or older, (2) consumed wine 3-5 times/month, (3) had no 124 known allergies to sulfur dioxide or asthma, and (4) were not knowingly pregnant, or planned to 125

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

126	become pregnant during the study. All willing participants that met the inclusion criteria were
127	selected. The consumer sensory evaluation occurred over 5 weeks in February/March 2021, with
128	one varietal (four wines) presented each week. Number of participants and demographic
129	information is presented in Table S2. Each participant was assigned a 4-digit code to anonymize
130	subject data and allow researchers to link an individual's responses during the multiple weeks of
131	the study. There were 46 participants that completed all five sessions. The sensory evaluations
132	were approved for human subjects participation by the Iowa State University Institutional
133	Review Board. Study participants gave written informed consent and were compensated for
134	their participation (\$5 per week and an extra \$25 for participating in all 5 weeks).
135	During the tasting session, participants were seated in individual sensory booths and
136	presented with all four wines in plastic tumblers (30 mL each wine) coded with 3-digit numbers
137	along with napkin, consent form, pen, water and spit cup with lid. All wines were presented in
138	the booth at the beginning of the session due to COVID-19 pandemic protocols to avoid
139	interaction between staff and participants during the session. Thirty milliliters of each wine was
140	served at room temperature, except for sparkling wines, which were refrigerated overnight before
141	each tasting, and bottles removed from the refrigerator immediately before the tasting session.
142	Wines were presented in ascending residual sugar, except for rosé wines which were presented at
143	the beginning of the red wine sessions (Marquette and Frontenac). This ordering was done to
144	prevent sweetness carry-over.(Jackson 2008) Participants were instructed to evaluate each wine
145	independently and were asked to rate their liking on a 7-point hedonic scale (extremely dislike to
146	extremely like). Participants also ranked the four wines at the end of the session (data not

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

147	shown). An additional preference question was asked during the final session to determine
148	whether participants preferred the white or red wines in the study.
149	Statistics. Statistical analyses were conducted using JMP Pro version 15.0.0 (SAS
150	Institute Inc., Cary, NC) and GraphPad Prism version 9.2.0 (GraphPad Software, San Diego,
151	CA). A one-way analysis of variance (ANOVA) was conducted to determine if grape variety
152	was a significant predictor of protein concentration (p<0.05). A one-way analysis of variance
153	(ANOVA) was also performed to determine if grape variety or wine style was a significant
154	predictor of liking scores.
155	Linear correlation statistics between hedonic liking and chemical analyses were
156	calculated as Spearman's r (p<0.05) using GraphPad Prism.
157	Participants' hedonic scores were used to rank the 20 wines for each participant, and
158	hierarchical clustering (Ward's method) on rankings was used to cluster participants. Rankings
159	were not standardized, and duplicate hedonic scores were assigned the same rank with lower
160	rankings taking into account the duplicate rankings above. For example, if a participant scored
161	three wines as "Extremely Like" and two wines as "Like," the "Extremely Like" wines were all
162	given Rank 1, and the "Like" wines were both given Rank 4. The wine rankings for each of the
163	46 participants is available in Table S3.
164	Results and Discussion
165	Industry Survey and Wine Selection. Results from a survey sent to Iowa grape and
166	wine industry members are shown in Table 1. The survey polled industry members on the
167	grape(s) they thought grew best in Iowa, and the varietal wine(s) and style(s) that best
168	represented Iowa. Respondents represented a range of vineyard/winery occupations and

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

169	vineyard/winery sizes (Supplementary Info). There were 51 unique participants, however, the
170	total number of responses for some questions was greater than 51 due to the "Check All That
171	Apply" nature of some questions.
172	Industry members reported that the five cultivars that grow best in Iowa were all newer
173	cold-hardy interspecific hybrids: Brianna (69%), Frontenac (65%), Marquette (49%), La
174	Crescent (49%), and Edelweiss (39%). The top four of these cultivars were reported by industry
175	members to also produce varietal wines that best represent Iowa, although Petite Pearl replaced
176	Edelweiss for the fifth position, possibly due to the former more recently being released (2009)
177	(Table 1). The cultivars of Brianna, Frontenac, Marquette, La Crescent and Edelweiss also were
178	identified as having significant plantings from an industry survey conducted for a previous
179	project.(Tuck et al. 2014) These five cultivars were selected to be used in the rest of the study
180	based on the aforementioned importance, but also because all five cultivars can be grown
181	throughout the entire state (based on cold-hardiness) and varietal examples of each are produced
182	by several commercial wineries. Respondents gave mixed answers, with respect to sweetness,
183	for the best Iowa wine style, with semi-sweet white as the top answer (67%) followed by dry red
184	(35%), semi-sweet red (35%) and dry white (29%) (Table 1). Therefore, the aim for the wine
185	selection was to procure a large array of styles ranging in sweetness levels, including specialty
186	styles like rosé, sparkling, and fortified.
187	Fifteen Iowa wines made from each of the 5 cultivars were purchased and tasted blindly
188	by wine professionals with good knowledge of hybrid cultivars. Wines were individually scored
189	(20-point scale) followed by discussion to identify a set of four wines that were perceived as

190 fault free and covered a range of styles for each cultivar (total = 20 wines). Compositional and

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

191	hedonic data on the wines are presented in Table 2. Initial chemical testing revealed one wine
192	had a chemical parameter higher than US regulatory limits and was exchanged for a similar wine
193	(variety and style) from a neighboring state (Nebraska).
194	Chemical Analyses. Chemical composition of the 20 commercial wines used in this
195	study are shown in Table 2.
196	Typical values for pH and TA range from 3.0-3.7 and 5-8g/L tartaric acid equivalents for
197	dry wines of V. vinifera.(Waterhouse et al. 2016) The pH values for cold-hardy interspecific
198	hybrid varietal wines are within this range, but the upper end of the TA range is higher (5 - 15
199	g/L as tartaric acid equivalents).(Watrelot et al. 2020) The wines used in this study all fell within
200	these expected pH and high TA ranges.
201	TA and pH were, as expected, inversely correlated ($r = -0.543$, Figure 1) across all wines.
202	However, we did observe both higher pH and higher TA in La Crescent wines as compared to
203	the other white varietals. This may be due to 'La Crescent' grapes having substantially more
204	malic acid than 'Brianna' or 'Edelweiss' (0.075 molar equiv. vs. 0.044 and 0.050 molar equiv.
205	respectively; molar equiv. is assumed from the sum of malic acid and lactic acid molar
206	equivalents as determined by HPLC-DAD-results not shown), and presumably also more
207	minerals like potassium. Glycerol, a fermentation by-product from yeast metabolism and
208	measured by HPLC-RID, ranged from 3.5 to 10.7 g/L among the varieties, compared to 7-10 g/L
209	reported in V. vinifera.(Waterhouse et al. 2016) In the hybrid wines of this study, however, it is
210	unclear what impact glycerol may have on consumer sensory perception. A positive correlation
211	was observed between glycerol and acetic acid ($r = 0.650$, Figure 1). Higher concentrations of
212	both compounds are typically observed in higher gravity fermentations due to a yeast osmotic

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

213	stress response(Waterhouse et al. 2016), although high concentrations of acetic acid may also be
214	produced by lactic or acetic acid bacteria. Glycerol and % alcohol were also positively
215	correlated ($r = 0.520$, Figure 1), presumably because higher alcohol wines were more likely to
216	start with higher gravity must with more osmotic stress.
217	Red wines in the study were analyzed for their phenolic content with the premise that
218	these commercial wines would be low tannin as previously reported.(Nicolle et al. 2019, Norton
219	et al. 2020, Watrelot 2021) Total iron reactive phenolics (IRP) in the red wines were generally
220	lower than values reported for vinifera (median 723.7 mg/L catechin equiv. vs. a V. vinifera
221	range of 872-3005 mg/L catechin equiv(Heredia et al. 2006) Tannin concentrations measured
222	by the Adams-Harbertson assay were below the limit of quantification and therefore much lower
223	than reports of V. vinifera wines.(Heredia et al. 2006) The one exception to this was Marquette 2,
224	which had IRP (1380 g/L) comparable to some vinifera wines, however, the tannin concentration
225	(150 g/L) is considerably lower than vinifera wines.(Heredia et al. 2006) As a caveat, the
226	winemaking protocols for these commercial wines were unknown.
227	The protein concentration of each wine (Table 2) was determined by a recently developed
228	method (Kassara et al. 2022) involving ethanol precipitation, dialysis, protein hydrolysis and
229	amino acid quantification by GC/MS. Protein concentrations for Marquette and Frontenac wines
230	have been reported previously (Nicolle et al. 2019, Norton et al. 2020) using other methods. This
231	is the first report of protein concentrations for the white cultivars, Brianna, Edelweiss and La
232	Crescent. The highest protein concentrations were observed in Frontenac and La Crescent wines
233	(avg =113 mg/L \pm 46 and 101 mg/L \pm 37, respectively). A one-way ANOVA analysis revealed
234	that variety is a significant effect for protein concentration; a post-hoc Tukey's analysis was

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

235	performed with results shown in Table 2. The higher protein and lower tannin of red wines
236	produced from interspecific hybrids as compared to V. vinifera has been previously
237	reported.(Springer et al. 2014, Springer et al. 2016) These observations may result from low
238	initial tannin and high protein in the original hybrid grapes and may be further exaggerated by
239	poor extraction of tannin during the fermentation due to potential interactions between the two
240	macromolecular classes, i.e., the high protein content of hybrids results in lower tannin
241	extractability.(Springer et al. 2016)
242	Wine of the other cultivars of Brianna, Edelweiss and Marquette all had significantly
243	lower protein concentrations than the Frontenac and La Crescent wines (34 mg/L \pm 6, 38 mg/L \pm
244	20 and 46 mg/L \pm 16, respectively). In white wines made from interspecific hybrid cultivar, the
245	impact of high protein is unreported. Anecdotal reports suggest that wines made from hybrid
246	varieties require higher than anticipated bentonite rates for protein stabilization.
246 247	varieties require higher than anticipated bentonite rates for protein stabilization. Consumer Acceptability & Cluster Analysis. The consumer hedonic data were
247	Consumer Acceptability & Cluster Analysis. The consumer hedonic data were
247 248	Consumer Acceptability & Cluster Analysis . The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week
247 248 249	Consumer Acceptability & Cluster Analysis . The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week (60-75 participants; demographic data in Supplementary Information). Of the original panelists,
247248249250	Consumer Acceptability & Cluster Analysis. The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week (60-75 participants; demographic data in Supplementary Information). Of the original panelists, 46 participants completed all five sessions. ALL DATA refers to the complete data set of all
 247 248 249 250 251 	Consumer Acceptability & Cluster Analysis . The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week (60-75 participants; demographic data in Supplementary Information). Of the original panelists, 46 participants completed all five sessions. ALL DATA refers to the complete data set of all participants over the 5 weeks (1392 data points), ALL 46 refers to the data set of the 46
 247 248 249 250 251 252 	Consumer Acceptability & Cluster Analysis . The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week (60-75 participants; demographic data in Supplementary Information). Of the original panelists, 46 participants completed all five sessions. ALL DATA refers to the complete data set of all participants over the 5 weeks (1392 data points), ALL 46 refers to the data set of the 46 participants that completed all 5 sessions (920 data points).
 247 248 249 250 251 252 253 	Consumer Acceptability & Cluster Analysis. The consumer hedonic data were collected over 5 weeks (one session per week) with varying numbers of participants each week (60-75 participants; demographic data in Supplementary Information). Of the original panelists, 46 participants completed all five sessions. ALL DATA refers to the complete data set of all participants over the 5 weeks (1392 data points), ALL 46 refers to the data set of the 46 participants that completed all 5 sessions (920 data points). Using ALL DATA, we observed that both varietal and sugar level (dry, off-dry, semi-

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

257	Since Brianna and Edelweiss are described as having "grapey, foxy" aroma/flavor (University of
258	Minnesota 2022, Maniscalco 2012), the findings suggest that Midwest consumers prefer "grapey,
259	foxy" wines made from grapes with significant Vitis labrusca heritage. This grapey/foxy
260	attribute is associated with several compounds, and especially methyl anthranilate and 2-
261	aminoacetophenone.(Acree et al. 1990) Neither the foxy sensory characteristic nor associated
262	odorants were quantified in this current study, but previous research has demonstrated that
263	consumers from California and Pennsylvania had different preferences for these specific
264	aroma/flavor compounds (Perry et al. 2019), emphasizing the appropriateness of performing
265	wine preference studies at regional levels.
266	Correlations between overall consumer preferences (ALL DATA) and individual
266 267	Correlations between overall consumer preferences (ALL DATA) and individual chemical components are presented in Figure 1. A positive correlation was observed between
267	chemical components are presented in Figure 1. A positive correlation was observed between
267 268	chemical components are presented in Figure 1. A positive correlation was observed between hedonic scores and residual sugar ($r = 0.292$), and negative correlations were observed between
267 268 269	chemical components are presented in Figure 1. A positive correlation was observed between hedonic scores and residual sugar ($r = 0.292$), and negative correlations were observed between hedonic scores and alcohol, acetic acid, glycerol, and IRP ($r = -0.144$, $r = -0.181$, $r = -0.254$, $r = $
267 268 269 270	chemical components are presented in Figure 1. A positive correlation was observed between hedonic scores and residual sugar ($r = 0.292$), and negative correlations were observed between hedonic scores and alcohol, acetic acid, glycerol, and IRP ($r = -0.144$, $r = -0.181$, $r = -0.254$, $r = -$ 0.270 respectively). However, while all aforementioned correlations were weak ($r < 0.3 $) they
267 268 269 270 271	chemical components are presented in Figure 1. A positive correlation was observed between hedonic scores and residual sugar (r = 0.292), and negative correlations were observed between hedonic scores and alcohol, acetic acid, glycerol, and IRP (r = -0.144 , r = -0.181 , r = -0.254 , r = -0.270 respectively). However, while all aforementioned correlations were weak (r < $ 0.3 $) they were all statistically significant (p<0.05).

and one was least favored. The sum of rankings (Table S3) for Edelweiss 4 (sweet sparkling)

and Frontenac 1 (sweet rosé) were considerably lower (151 and 226 respectively) than all other

277 ranking sums (overall range 151-680) indicating a higher liking across many participants.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Marquette 2 (dry) had the highest sum of rankings (680) indicating a lower liking across many
participants.

280	To identify consumer preference segments, a hierarchical clustering analysis (Ward's
281	type) was performed on the ALL 46 data, resulting in five clusters. There was no correlation
282	between clusters and participant demographics: age and gender (results not shown).
283	Mean hedonic scores for each varietal and sweetness style were determined within each
284	participant cluster (Tables 3 and 4). The ALL 46 data were compared to the ALL DATA using a
285	χ^2 test, which indicated that the ALL 46 data sufficiently represented the overall data set.
286	Cluster hedonic means for each variety or sweetness style are reported in Table 3 and 4. Cluster
287	2 possessed the same order of mean hedonic scores as the ALL DATA (and ALL 46), however
288	with a larger overall range (for variety 3.38-5.49 vs. 4.06-5.02 respectively).
289	To facilitate interpretation of participant cluster data, average concentrations of all
290	chemical parameters were determined for the upper and lower quintiles of wines (based on
291	hedonic scores) for each cluster (Table 5). For all clusters (representing 89% of participants)
292	except Cluster 4 the top quintile wines had high average residual sugar (>40 g/L) and low
293	alcohol (<12.5%). Labrusca wines made up all four of Cluster 2 top wines and none in the
294	bottom wines. The other clusters showed less evidence for preference for labrusca-type wines.
295	Cluster 4 participants (11%) preferred wines with lower sugar. Aside from residual sugar
296	(Cluster 2), glycerol (Cluster 2) and titratable acidity (Cluster 5), no other chemical parameter
297	was significantly different between the top 20% and bottom 20% of wines within a cluster.
298	Results of the cluster analysis indicate the average consumer liked wines with substantial
299	residual sugar and made from labrusca-based varieties (Cluster 1, 2 and 3), however, some

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

300	consumers preferred lower sugar or wines not made from labrusca varieties (Cluster 4 and 5
301	respectively). Our observation that some wine consumer segments prefer sweeter wines is both
302	widely accepted in non-technical wine literature (Thach 2021), and not well-substantiated in the
303	literature. Studies of other fruits or fruit-derived products, however, have clearly shown the
304	importance of sweetness perception in consumer liking.(Crisosto et al. 2005, Shewfelt et al.
305	2000) This perception is based on both the sugar content and the acidity of the product. Several
306	studies have shown that the highest sugar concentrations are not always the most accepted or
307	preferred by consumers when there is a correspondingly high acidity. Instead, there is an
308	optimal sugar concentration that is in balance with other chemical parameters, particularly
309	acidity, within the fruit or fruit-derived product. While there are some wine groups that promote
310	the use of a sweetness scale (using a sugar to acid ratio), it is not widely applied throughout the
311	wine industry. For the wines in this study, the sugar to acid ratio (Table S4) had a low correlation
312	(r = 0.260, result not shown) to hedonic scores and was lower than the correlation of hedonic
313	scores with RS ($r = 0.292$). Therefore, the sugar to acid ratio parameter was assumed to not be a
314	driver of consumer liking for these wines.

The current study considered only major chemical components associated with mouthfeel and taste and did not measure other important contributors to overall perception including visual aspects of color hue and intensity, and flavor odorants. Several reports of volatile compounds present in grapes and wine made from these varieties are available, however there are no reports linking to consumer sensory evaluation.(Mansfield et al. 2009, Rice et al. 2018, Rice et al. 2019, Savits 2014) Future studies could include both color analyses, volatile analyses and descriptive sensory analyses, as has been reported for vinifera wines.(Lund et al. 2009, Mezei et al. 2021)

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

322	Conclusions
323	Although the Midwestern US wine industry has grown rapidly in recent years, and most
324	sales occur through the tasting room to local consumers, little is known about these consumers
325	and their preferences. The combination of consumer preference clustering and chemical analyses
326	helps understanding consumer segments in Iowa for Iowa wines, and potentially more broadly
327	the Midwest. Over half of the participants fell into two clusters (1 and 2) who preferred semi-
328	sweet and sweet styles of white varietals (Brianna and Edelweiss). This observation clearly
329	supports the popular stereotype of Midwest consumers preferring sweet wines(Hammon 2021)
330	and is corroborated with the current Industry Survey results where the majority of the top selling
331	wines were sweet (54%, Table S3). However, there is also evidence that other consumers
332	(Cluster 4, 11%) preferred less sweet wines and gave low scores to the sweetest wines. This
333	knowledge helps grape growers and winemakers understand that a range of consumer
334	preferences exist, which may be helpful for marketing initiatives and wine portfolio planning.
335	The chemical analysis performed for the study contributed to new knowledge for
336	commercial versions of these five cold-hardy, interspecific wine cultivars. Notably, some wines
337	have remarkably high protein concentrations, and the red varieties have low tannin
338	concentrations as compared to V. vinifera wines. These results lead to additional questions
339	regarding protein stability in white wines, and mouthfeel perceptions in red wines. Anecdotally,
340	winemakers have commented on the increased rates of bentonite necessary for stabilizing wines
341	made from interspecific hybrids. Future research considerations should consider cultivar effect
342	on protein concentrations, and what other winemaking protocols could be employed to mitigate
343	high protein.(Nicolle et al. 2019, Norton et al. 2020, Springer et al. 2016) In terms of red wine,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

344	the high protein concentration is currently being considered as a factor in low tannin
345	concentrations which were again observed in this study. Further investigations into protein
346	removal or disruption to increase tannin extraction/retention from these grapes is ongoing. The
347	overall goal in increasing tannin concentration is to improve mouthfeel of red wines through
348	enhanced astringency perception.
349	Overall, this study aimed to increase knowledge about wines produced from interspecific
350	hybrid cultivars through chemical testing and consumer sensory information. This information is
351	useful for both researchers and grape and wine industry members in the design of future research
352	experiments for grape-growing and production protocols.
353	References
354	Acree TE, Lavin, EH, Nishida, R and Watanabe, S. 1990. O-Amino acetophenone the foxy
355	smelling component of labruscana grapes. In Flavor Science and Technology, 6th
356	Weurman Symposium. pp. 49-52. Geneva, Switzerland.
357	Atucha A, Hedtcke, J and Workmaster, BA. 2018. Evaluation of Cold-climate interspecific
358	Hybrid Wine Grape Cultivars for the Upper Midwest. J Am Pom Soc 72(2):80-93.
359	Berkey T, Mansfield, A, Lerch, S, Meyers, J and Vanden Heuvel, J. 2011. Crop Load
360	Adjustment in 'Seyval Blanc' Winegrape: Impacts on Yield Components, Fruit
361	Composition, Consumer Wine Preferences, and Economics of Production. Horttech
362	21(5):593-598. DOI: 10.21273/HORTTECH.21.5.593.
363	Biasoto AC, Netto, FM, Marques, EJN and da Silva, M. 2014. Acceptability and preference
364	drivers of red wines produced from Vitis labrusca and hybrid grapes. Food Res Intl
365	62:456-466. DOI: 10.1016/j.foodres.2014.03.052.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

366	Costanigro M and Jablonski, BBR. 2021. Consumer Stigma and the Reputation Trap Hypothesis:
367	An In-Store Experiment with Colorado Wines. J Wine Econ 16(2):210-230. DOI:
368	10.1017/jwe.2021.8.
369	Crisosto CH, Crisosto, GM and Garner, D. 2005. Understanding Tree Fruit Consumer
370	Acceptance. Acta Hortic 682(682):865-870. DOI: 10.17660/ActaHortic.2005.682.112.
371	Hammon C. 2021. In the Midwest, Sweet Wines are Big Business and Majorly Misunderstood.
372	Wine Enthusiast, September 8, 2021.
373	Heredia T, Adams, D, Fields, K, Held, P and Harbertson, J. 2006. Evaluation of a comprehensive
374	red wine phenolics assay using a microplate reader. Am J Enol Vitic 57(4):497-502.
375	Jackson RS. 2008. Wine Science: Principles and Applications. Third ed. Food Science and
376	Technology. Academic Press, London, UK.
377	Kassara S, Norton, EL, Mierczynska-Vasilev, A, Sacks, GL and Bindon, KA. 2022.
378	Quantification of protein by acid hydrolysis reveals higher than expected concentrations
379	in red wines: implications for wine tannin concentration and colloidal stability. Food
380	Chem:132658. DOI: 10.1016/j.foodchem.2022.132658.
381	Lund CM, Thompson, MK, Benkwitz, F, Wohler, MW, Triggs, CM, Gardner, R, Heymann, H
382	and Nicolau, L. 2009. New Zealand Sauvignon blanc Distinct Flavor Characteristics:
383	Sensory, Chemical, and Consumer Aspects. Am J Enol Vitic 60(1):1.
384	Maniscalco M. 2012. Brianna Grape is Midwest's New Tropic Fruit. Midwest Wine Press.
385	Mansfield AK and Vickers, ZM. 2009. Characterization of the Aroma of Red Frontenac Table
386	Wines by Descriptive Analysis. Am J Enol Vitic 60(4):435.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

387	Mezei LV, Johnson, TE, Goodman, S, Collins, C and Bastian, SEP. 2021. Meeting the demands
388	of climate change: Australian consumer acceptance and sensory profiling of red wines
389	produced from non-traditional red grape varieties. Oeno One 55(2):29-46. DOI:
390	10.20870/oeno-one.2021.55.2.4571.
391	Nicolle P, Marcotte, C, Angers, P and Pedneault, K. 2019. Pomace limits tannin retention in
392	Frontenac wines. Food Chem 277:438-447. DOI: 10.1016/j.foodchem.2018.10.116.
393	Norton EL, Sacks, GL and Talbert, JN. 2020. Nonlinear Behavior of Protein and Tannin in Wine
394	Produced by Cofermentation of an Interspecific Hybrid (Vitis spp.) and vinifera Cultivar.
395	Am J Enol Vitic 71(1):26-32. DOI: 10.5344/ajev.2019.19032.
396	Pedneault K, Dorais, M and Angers, P. 2013. Flavor of Cold-Hardy Grapes: Impact of Berry
397	Maturity and Environmental Conditions. J Agric Food Chem 61(44):10418-10438. DOI:
398	10.1021/jf402473u.
399	Perry DM, Byrnes, NK, Heymann, H and Hayes, JE. 2019. Rejection of labrusca-type aromas in
400	wine differs by wine expertise and geographic region. Food Qual Pref 74:147-154. DOI:
401	10.1016/j.foodqual.2019.01.018.
402	Rice S, Koziel, JA, Dharmadhikari, M and Fennell, A. 2017. Evaluation of Tannins and
403	Anthocyanins in Marquette, Frontenac, and St. Croix Cold-Hardy Grape Cultivars.
404	Fermentation 3(3):47. DOI: 10.3390/fermentation3030047.
405	Rice S, Lutt, N, Koziel, J, Dharmadhikari, M and Fennell, A. 2018. Determination of Selected
406	Aromas in Marquette and Frontenac Wine Using Headspace-SPME Coupled with GC-
407	MS and Simultaneous Olfactometry. Separations 5(1). DOI:
408	10.3390/separations5010020.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

409	Rice S, Tursumbayeva, M, Clark, M, Greenlee, D, Dharmadhikari, M, Fennell, A and Koziel, J.
410	2019. Effects of Harvest Time on the Aroma of White Wines Made from Cold-Hardy
411	Brianna and Frontenac Gris Grapes Using Headspace Solid-Phase Microextraction and
412	Gas Chromatography-Mass Spectrometry-Olfactometry. Foods 8(1). DOI:
413	10.3390/foods8010029.
414	Sáenz-Navajas M-P, Avizcuri, J-M, Ballester, J, Fernández-Zurbano, P, Ferreira, V, Peyron, D
415	and Valentin, D. 2015. Sensory-active compounds influencing wine experts' and
416	consumers' perception of red wine intrinsic quality. Food Sci Tech 60(1):400-411. DOI:
417	10.1016/j.lwt.2014.09.026.
418	Savits J. 2014. Descriptive sensory analysis of wines produced from Iowa-grown La Crescent
419	grapes. Iowa State University, Department of Food Science and Human Nutrition.
420	Shewfelt RL and Brückner, B. 2000. Fruit & vegetable quality : an integrated view. CRC Press,
421	Boca Raton, FL.
422	Slegers A, Angers, P, Ouellet, E, Truchon, T and Pedneault, K. 2015. Volatile Compounds from
423	Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in
424	Quebec (Canada) for Wine Production. Molecules 20(6):10980-11016. DOI:
425	10.3390/molecules200610980.
426	Springer LF and Sacks, GL. 2014. Protein-Precipitable Tannin in Wines from Vitis vinifera and
427	Interspecific Hybrid Grapes (Vitis ssp.): Differences in Concentration, Extractability, and
428	Cell Wall Binding. J Agric Food Chem 62(30):7515-7523. DOI: 10.1021/jf5023274.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

429	Springer LF, Chen, LA, Stahlecker, AC, Cousins, P and Sacks, GL. 2016. Relationship of
430	Soluble Grape-Derived Proteins to Condensed Tannin Extractability during Red Wine
431	Fermentation. J Agric Food Chem 64(43):8191-8199. DOI: 10.1021/acs.jafc.6b02891.
432	Thach L. 2021. Why Wineries Should Consider Making More Sweet Wine, According To New
433	E&J Gallo Study. Forbes. Accessed: May 20, 2021.
434	Tuck B and Gartner, WC. 2014. Vineyards and Wineries in Iowa: A Status and Economic
435	Contribution Report. University of Minnesota.
436	Grape Breeding and Enology Group. 2022. Grapes: Varieties. University of Minnesota.
437	Wang J, Capone, DL, Wilkinson, KL and Jeffery, DW. 2016. Rosé wine volatile composition
438	and the preferences of Chinese wine professionals. Food Chem 202:507-517. DOI:
439	10.1016/j.foodchem.2016.02.042.
440	Waterhouse AL, Sacks, GL and Jeffery, DW. 2016. Understanding Wine Chemistry. Wiley,
441	Chicester, West Sussex, United Kingdom.
442	Watrelot A, Savits, J and Moroney, M. 2020. Estimating Grape Maturity by Titratable Acidity.
443	Iowa State University.
444	Watrelot AA. 2021. Tannin Content in Vitis Species Red Wines Quantified Using Three
445	Analytical Methods. Molecules 26(16). DOI: 10.3390/molecules26164923.
446	

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

448

wine industry members. F	results for Iowa grape and fifty-one unique individuals onded.
Cultivar/Style	Percentage of Respondents
Which cultivar(s) do you believ that apply) (n=179)	
Brianna	69%
Frontenac	65%
Marquette	49%
La Crescent	49%
Edelweiss	39%
Petite Pearl	25%
Concord	22%
other	33%
Which cultivar(s) do you believ (check all that apply) (n=127)	e could best represent Iowa?
Brianna	57%
La Crescent	55%
Marquette	37%
Frontenac	33%
Petite Pearl	18%
Edelweiss	16%
Concord	6%
other	27%
What wine style(s) do you belie (check all that apply) (n=134)	ve could best represent Iowa?
Semi-Sweet White	67%
Dry Red	35%
Semi-Sweet Red	35%
Dry White	29%
Sparkling	24%
Sweet Red	24%
Sweet White	18%
Dessert	18%

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22002c AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Rose

14%

Table 2Summary of consumer sensory data and chemical analyses for all wines used for the sensory evaluation. Wines' data
are presented in the order they were presented to consumer participants. Significantly different values (one-way ANOVA
p<0.05) for the variety means are italicized with the proceeding letters indicating the result of the Tukey's post-hoc test. IRP and
Protein are presented as mean concentration ± standard deviation. RS=residual sugar, % abv=% alcohol by volume,
TA=titratable acidity, IRP=iron-reactive phenolics, nd=below limit of detection. The number of wines in each category of
sweetness level is listed in parentheses.

Wine	Style	Hedoni	Median	Mod	RS	%ab	рН	TA	Acetic	Glycerol	IRP	Tannin	Protein
		c Mean (1 to 7)		e	(g/L)	V		(g/L tartaric	Acid	(g/L)	(mg/L cat.	(mg/L cat.	(mg/L)
		(1 to 7)						acid)	(g/L)		equiv.)	cat. equiv.)	
Brianna	Variety mean	4.9	5.25	5.25	64	12.5	3.37	7.73	0.25 ab	5.75 bc		equivij	<i>33.5</i> c
1	Dry	4.58	5	5	5	12.74	3.27	7.32	0.27	6.16			42 ± 0.3
2	Semi-Sweet	5.52	6	6	59	11.8	3.43	8.19	0.22	4.88			31 ± 0.4
3	Sweet	4.80	5	5	110	12.99	3.36	7.13	0.22	6.54			30 ± 5
4	Sweet	5.20	5	5	82	12.31	3.41	8.29	0.29	5.43			32 ± 8
Edelweiss	Variety mean	4.8	5.25	6	58	10.5	3.44	8.06	<i>0.21</i> b	<i>4.86</i> c			37 c
1	Semi-Sweet	5.14	5	6	25	11.07	3.21	8.49	0.24	4.98			37 ± 3
2	Semi-sweet	4.50	5	6	53	9.64	3.55	5.8	0.16	3.5			20 ± 0.2
3	Semi-Sweet	4.24	5	5	75	13.65	3.43	8.41	0.32	6.61			28 ± 0.3
4	Sweet Sparkling	5.88	6	7	79	7.65	3.55	9.52	0.12	4.36			66 ± 4
La Crescent	Variety mean	4.5	4.24	4.75	24	12.99	3.56	8.90	0.24 ab	7.32 abc			<i>101</i> ab
1	Dry	3.90	3	3	4	13.78	3.17	9.79	0.2	7.14			51 ± 4
2	Off-dry	4.16	4	5	15	12.66	3.76	6.62	0.26	7.41			118 ± 0.2
3	Off-dry	4.51	5	5	16	13.4	3.73	9.04	0.36	7.69			100 ± 24
4	Semi-sweet	5.41	5	6	64	12.12	3.56	10.14	0.16	7.03			136 ± 0.3
Marquette	Variety mean	4.1	4.5	4.25	28	13.85	3.66	6.56	0.64 a	7.98 ab	759		68.5 bc
1	Dry Rose Sparkling	4.34	5	5	7	14.77	3.64	6.73	0.39	9.55	231 ± 7	nd	41 ± 4
2	Dry	3.12	3	1	0.1	10.12	3.49	7.25	0.61	7.6	1380 ± 126	150 ± 7	41 ± 0.1
3	Dry	4.12	5	5	0.2	12.46	3.67	7.78	1.06	8.5	764 ± 112	nd	33 ± 2
4	Sweet Fortified	4.68	5	6	104	18.05	3.82	4.49	0.48	6.29	661 ± 21	nd	68 ± 11
Frontenac	Variety mean	4.5	4.74	5.25	25	12.73	3.46	9.58	0.57 ab	8.67 a	679.5	nd	<i>113</i> a
1	Semi-sweet Rose	5.48	6	6	40	12.16	3.17	11.71	0.47	5.73	166 ± 2	nd	54 ± 0.1
2	Dry	4.05	4	6	0.04	13.34	3.71	8.28	0.95	10.68	925 ± 0.4	nd	132 ± 14
3	Dry	3.57	3	3	1.5	12.7	3.27	11.07	0.34	8.77	770 ± 16	nd	104 ± 0.2
4	Semi-Sweet	4.92	6	6	58	12.72	3.67	7.24	0.51	9.49	858 ± 128	nd	162 ± 5
Average by S	weetness Level												
<9.9g/L	Dry (7)	3.95			2.6	12.84	3.46	8.32	0.55	8.34			63
10-19.9g/L	Off-dry (2)	4.33			15.3	13.03	3.74	7.83	0.31	7.55			109
20-75g/L	Semi-Sweet (7)	5.03			53.4	11.88	3.43	8.57	0.30	6.03			67
75+	Sweet (4)	5.14			93.8	12.75	3.54	7.36	0.28	5.66			49

Table 3 Mean hedonic scores by variety for: all participant scores (ALL DATA), the 46participants who completed all weeks (ALL 46) and the clusters identified through Ward'sHierarchical cluster analysis. One-way ANOVA (p < 0.05) performed on the ALL DATA todetermine if variety is a factor. Mean comparisons for the ALL DATA performed using Steel-
Dwass method.

	D				
n	Brianna	Edelweiss	La Crescent	Marquette	Frontenac
	5.02 a	4.94 a	4.50 b	4.06 c	4.51 b
46	5.03	4.82	4.33	3.98	4.50
17 (37%)	5.35	5.04	3.98	4.47	4.83
8 (17%)	5.47	5.09	4.03	3.38	4.56
12 (26%)	4.85	4.50	4.73	3.25	3.71
5 (11%)	3.55	4.55	4.65	4.30	4.55
4 (9%)	5.12	4.62	4.75	4.88	5.31
	46 17 (37%) 8 (17%) 12 (26%) 5 (11%)	5.02 a 46 5.03 17 (37%) 5.35 8 (17%) 5.47 12 (26%) 4.85 5 (11%) 3.55	5.02 a 4.94 a 46 5.03 4.82 17 (37%) 5.35 5.04 8 (17%) 5.47 5.09 12 (26%) 4.85 4.50 5 (11%) 3.55 4.55	nBriannaEdelweissCrescent5.02 a4.94 a4.50 b465.034.824.3317 (37%)5.355.043.988 (17%)5.475.094.0312 (26%)4.854.504.735 (11%)3.554.554.65	nBriannaEdelweissCrescentMarquette5.02 a4.94 a4.50 b4.06 c465.034.824.333.9817 (37%)5.355.043.984.478 (17%)5.475.094.033.3812 (26%)4.854.504.733.255 (11%)3.554.554.654.30

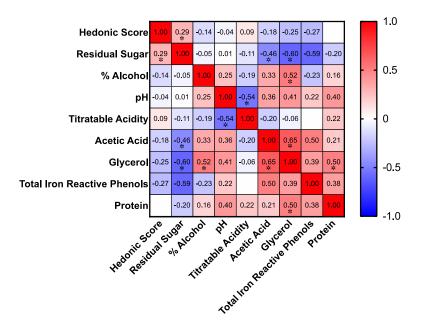


Table 4 Mean hedonic scores by style for: all participant scores (ALL DATA), the 46 participants who completed all weeks (ALL 46) and the clusters identified through Ward's Hierarchical cluster analysis. One-way ANOVA (p < 0.05) performed on the ALL DATA to determine if variety is a factor. Mean comparisons for the ALL DATA performed using Steel-Dwass method.

Group	n	Dry	Off-dry	Semi- sweet	Sweet
ALL DATA		3.94 a	4.34 a	5.04 b	5.13 b
ALL 46	46	3.87	4.20	4.91	5.19
Cluster 1	17 (37%)	4.06	3.68	5.24	5.57
Cluster 2	8 (17%)	2.98	4.06	5.25	6.09
Cluster 3	12 (26%)	3.55	4.88	4.42	4.67
Cluster 4	5 (11%)	4.43	5.30	4.11	4.00
Cluster5	4 (9%)	5.11	3.25	5.32	4.81

	Clu	ster 1	Cluster 2		Clu	ster 3	Clus	ster 4	Clu	ster 5
	Тор 20%	Bottom 20%	Тор 20%	Bottom 20%	Тор 20%	Bottom 20%	Тор 20%	Bottom 20%	Тор 20%	Bottom 20%
# People/% Participants	17/37%		8/17%		12/26%		5/11%		4/9%	
% White	50%	50%	100%	25%	100%	25%	50%	75%	75%	100%
% Labrusca	50%	25%	100%	0%	50%	25%	25%	75%	25%	50%
Residual Sugar (g/L)	59 ± 16	20 ± 36	<u>82 ± 20</u>	<u>3 ± 3</u>	60 ± 31	39 ± 50	10 ± 12	67 ± 46	42 ± 27	48 ± 45
% Alc. (v/v)	11.08 ± 2.32	12.56 ± 1.70	11.19 ± 2.41	$\begin{array}{c} 12.78 \pm \\ 2.01 \end{array}$	11.18 ± 2.37	12.79 ± 3.87	12.57 ± 1.09	12.91 ± 0.57	12.46 ± 0.89	12.17 ± 1.72
pH	3.46 ± 0.21	3.34 ± 0.15	$\begin{array}{c} 3.44 \pm \\ 0.08 \end{array}$	3.49 ± 0.23	3.57 ± 0.14	3.64 ± 0.15	3.58 ± 0.25	3.37 ± 0.07	$\begin{array}{c} 3.33 \pm \\ 0.20 \end{array}$	3.60 ± 0.1
Titratable Acidity (g/L)	9.16 ± 1.94	9.13 ± 1.66	$\begin{array}{c} 8.28 \pm \\ 0.98 \end{array}$	7.89 ± 1.34	8.64 ± 1.55	6.46 ± 1.66	8.40 ± 0.52	8.73 ± 1.67	<u>9.96 ±</u> <u>1.44</u>	<u>7.15 ± 1.3</u>
Acetic Acid (g/L)	0.33 ± 0.19	0.37 ± 0.17	0.21 ± 0.07	0.57 ± 0.37	0.21 ± 0.08	0.55 ± 0.33	$\begin{array}{c} 0.65 \hspace{0.1cm} \pm \\ 0.41 \end{array}$	0.29 ± 0.05	0.26 ± 0.14	0.25 ± 0.0
Glycerol (g/L)	6.12 ± 2.32	7.53 ± 0.92	<u>5.30 ±</u> <u>0.93</u>	<u>8.20 ± 1.06</u>	6.06 ± 1.42	7.02 ± 2.98	7.96 ± 2.36	6.84 ± 1.40	$\begin{array}{c} 6.20 \pm \\ 1.08 \end{array}$	6.29 ± 1.9
Total Iron- Reactive Phenolics (mg/L epicat. equiv.)	511.72 ± 489.07	1075.02 ± 431.65		791.83 ± 575.17		988.68 ± 363.84	844.55 ± 113.42	769.80	165.9	
Protein (mg/L)	78 ± 57	56 ± 33	40 ± 17	42 ± 7	88 ± 48	66 ± 49	76 ± 49	48 ± 37	68 ± 46	67 ± 49

Table 5 Description of the five clusters from Hierarchical Clustering Analysis. Average chemical parameters from the top 20% and bottom 20% of wines are shown with standard deviations. Significantly different values from the top 20% to bottom 20% within the same cluster are shown in italics and underlined

Figure 1. Heat map for linear correlations, showing Spearman's r (* denotes significance at p<0.05), between chemical parameters and hedonic liking scores for ALL DATA.

Supplementary Table 1 Ranking of ALL 46 data for clustering analysis. Rank sums and averages are presented for each wine.
The cluster assigned each panelist after the Ward's cluster analysis was performed is also presented.

Paneli st/Win				•						2		•			•						
st/ win es	B1	B2	B3	B4	E1	E2	E3	E4	L1	L2	L3	L4	M1	M2	M3	M4	F1	F2	F3	F4	Cluster
5001	6	6	1	13	6	17	13	6	17	20	13	6	1	6	6	17	1	13	1	1	1
5005	4	1	4	2	4	16	4	4	16	4	15	4	13	13	4	16	16	2	16	4	3
5006	3	3	3	1	3	3	14	3	14	3	19	3	1	19	14	14	3	3	18	3	1
5008	9	2	1	2	9	9	19	2	9	17	9	2	9	20	9	2	2	2	17	9	1
5009	1	7	1	7	19	7	17	1	19	17	7	1	7	13	13	1	1	7	13	13	1
5010	12	7	2	1	12	11	15	2	15	7	7	7	15	20	12	2	2	15	15	2	2
5011	16	11	3	11	11	3	16	3	16	1	20	1	3	11	3	3	3	16	11	3	1
5013	12	12	16	16	2	12	16	12	2	2	6	6	6	16	5	16	6	1	6	6	4
5014	7	1	4	1	11	11	4	1	17	14	14	4	11	17	14	7	7	17	17	7	2
5015	12	4	12	4	1	12	12	1	12	12	12	4	10	12	4	4	4	10	12	1	1
5016	11	1	1	11	1	1	18	1	11	1	18	11	1	20	11	11	1	11	1	1	1
5017	5	5	12	1	1	5	12	1	19	12	17	12	5	12	5	1	5	17	19	5	1
5018	7	1	1	10	17	1	17	1	17	10	10	7	10	10	9	1	10	10	17	1	1
5019	5	7	11	11	7	11	7	1	1	11	5	7	1	11	11	19	1	19	11	11	3
5020	2	2	15	8	8	2	16	2	16	16	16	8	8	14	8	1	8	2	16	2	1
5021	5	3	11	5	1	13	11	1	13	5	13	5	19	19	13	13	3	13	5	5	3
5022	5	2	5	2	12	12	11	5	12	5	5	5	17	19	17	19	1	2	12	12	3
5023	7	1	7	7	1	7	16	1	7	1	7	1	7	16	7	6	16	16	16	7	3
5024	13	1	1	5	11	5	13	3	16	11	16	5	20	16	16	5	5	5	13	3	2
5025	11	4	11	4	4	16	4	1	11	4	11	1	4	19	11	19	1	16	10	16	3
5026	8	2	8	1	2	17	14	2	8	2	2	2	17	14	8	19	8	19	8	14	3
5027	10	15	5	15	2	15	10	1	15	10	5	10	5	20	5	10	2	2	15	5	4
5028	14	8	2	1	2	14	14	2	14	2	14	2	8	11	8	2	11	14	20	11	3
5029	11	4	1	1	11	4	14	1	19	14	14	4	4	19	14	14	4	4	11	4	1
5031	15	3	15	3	3	1	15	3	15	3	3	1	3	15	3	3	3	3	15	3	1

5032	16	5	12	1	12	16	5	1	16	16	5	1	16	12	12	5	1	5	5	5	2
5034	13	5	13	13	5	5	1	1	18	13	5	5	1	18	13	1	5	5	20	5	1
5035	2	2	18	10	2	19	10	15	2	19	10	2	2	15	10	1	2	10	2	15	5
5036	4	4	16	4	11	12	4	12	1	16	16	1	4	16	20	9	1	12	9	12	5
5037	11	13	6	1	6	13	6	1	13	6	6	4	4	19	19	12	13	13	13	1	3
5038	5	1	5	5	10	5	15	5	15	15	10	1	10	15	20	10	1	10	15	1	1
5039	5	5	5	13	5	13	13	5	1	13	20	13	5	13	5	1	1	1	13	5	5
5040	13	2	2	7	13	7	2	1	16	12	7	2	20	16	16	7	2	16	13	7	2
5041	12	5	1	1	12	5	5	1	17	12	5	5	12	17	5	1	12	17	17	5	2
5042	3	3	10	16	1	16	10	3	10	3	1	16	10	3	3	10	10	3	16	16	4
5043	8	1	15	8	1	15	8	8	1	15	15	1	8	8	15	8	1	1	15	1	5
5046	11	5	5	5	11	1	13	1	13	18	18	5	5	18	13	3	5	13	13	3	1
5049	14	8	3	1	14	3	3	8	19	14	8	3	18	19	14	8	8	8	3	1	2
5050	15	12	19	6	6	12	19	1	6	10	1	15	12	15	1	1	1	6	15	10	4
5051	6	11	14	1	1	14	11	6	11	6	1	14	20	14	6	14	1	6	1	14	3
5053	2	9	9	2	9	16	16	1	2	2	2	2	19	9	9	2	19	9	16	9	3
5054	2	9	9	9	15	2	2	2	17	9	9	2	17	15	2	9	1	2	17	17	1
5055	11	3	7	1	3	7	11	1	15	13	15	10	7	15	15	13	3	15	15	3	1
5056	16	2	2	2	2	2	2	1	12	12	16	11	16	19	20	2	2	12	12	2	2
5057	12	4	16	18	4	4	12	1	4	4	1	18	12	4	1	16	4	4	12	18	4
5058	1	12	12	9	1	15	1	15	1	1	1	1	1	18	18	9	9	17	14	18	3
0000	39			-	-	10	-	10	-	-	-	-	-	10	10	-	-	17		31	U
sum	3	234	352	276	305	427	491	151	541	433	450	251	424	680	467	367	226	424	571	7	
averag	8.5	5.0	7.6	6	6.6	9.2 °	10.	3.2	11. 76	9.4	9.7 °	5.4	9.2 2	14. 79	10.	7.9 °	4.9	9.2 2	12.	6. 80	
e 1	4	9	5	6	3	8	67	8	76	1	8	6	2	78	15 5	8	1	2	41	89 1	
mode rank	11	1	1	1	1	16	16	1	16	12	5	1	1	19	5	1	1	2	15	1	
overall	10	3	8	5	6	13	17	1	18	14	15	4	11	20	16	9	2	11	19	7	

Wine	RS (g/L)	TA (g/L tartaric acid equiv.)	Sugar to Acid Ratio
B1	5	7.32	0.66
B2	59	8.19	7.22
B3	110	7.13	15.40
B4	82	8.29	9.94
E1	25	8.49	2.98
E2	53	5.8	9.16
E3	75	8.41	8.88
E4	79	9.52	8.28
L1	4	9.79	0.44
L2	15	6.62	2.24
L3	16	9.04	1.75
L4	64	10.14	6.30
M1	7	6.73	1.06
M2	0.1	7.25	0.01
M3	0.2	7.78	0.02
M4	104	4.49	23.17
F1	40	11.71	3.41
F2	0.04	8.28	0.005
F3	1.5	11.07	0.13
F4	58	7.24	7.99

Supplementary Table 2 Sugar to acid ratios (RS divided by TA)
for all wines. RS=residual sugar, TA=titratable acidity; B=Brianna,
E=Edelweiss, L=La Crescent, M=Marquette, F=Frontenac.

Supplementary Table 3	
and additional survey rest	ults from Iowa
grape and wine industr	y members.
Category	Percentage of
	Responses
Affiliation (check all that appl	y) (n=93)
Winery Owner	55%
Winery Employee	29%
Vineyard Owner	55%
Vineyard Employee	16%
Sales/Marketing/Retail	25%
Other	2%
Winery Size (gallons/year) (n=	35)
10 000+	28%
5000-9999	23%
1000-4999	31%
100-999	14%
<100	3%
	53)
Top Selling Wine Varieties (n=	· ·
Brianna	28%
Concord/Catawba	15%
Edelweiss	13%
Marechal Foch	8%
Frontenac	8%
Marquette	6%
Other	23%
Top Selling Wine Styles (n=52)
Sweet White	31%
Sweet Red	23%
Semi sweet white	21%
Dry Red	10%
Semi sweet red	6%
Rose	6%
Dry White	4%

Week	Variety	n	Gender		Age				
			Female	Male	21-30	31-40	41-50	51-60	>60
1	Brianna	60	75%	25%	58%	15%	8%	10%	8%
2	Edelweiss	66	71%	29%	68%	11%	6%	9%	6%
3	La Crescent	73	68%	32%	63%	12%	8%	8%	8%
4	Marquette	74	70%	30%	62%	12%	9%	8%	8%
5	Frontenac	75	69%	31%	63%	11%	11%	8%	8%
	*All 5 Weeks	46	80%	20%	54%	15%	9%	13%	9%

Supplementary Table 4 Demographic data by week for the consumer sensory evaluation.