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Background and goals: Lake Erie Concord growers have access to high-resolution spatial soil 25 

and production data but lack protocols and information on the optimum time to collect these data. 26 

This study intends to provide clearer information regarding the type and timing of sensor 27 

information to support in-season management.   28 

Methods and key findings: A three-year study in a 2.6 ha vineyard collected yield, pruning mass, 29 

canopy vigor and soil data, including yield and pruning mass from the previous year, at 321 sites. 30 

Stepwise linear regression and random forest regression approaches were used to model site-31 

specific yield and pruning mass using spatial historical production data, multi-temporal in-season 32 

canopy vigor and soil data. The more complex yield elaboration process was best modelled with 33 
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non-linear random forest regression while the simpler development of pruning mass was best 34 

modelled by linear regression. 35 

Conclusions and significance: Canopy vigor in the weeks preceding bloom was the most 36 

important predictor of the current season’s yield and should be used to generate stratified sampling 37 

designs for crop estimation at 30 days after bloom. In contrast, pruning mass was not well predicted 38 

by canopy vigor, even late-season canopy vigor, which is widely advocated for pruning mass 39 

estimation in viticulture. The previous year’s pruning mass was the dominant predictor of pruning 40 

mass in the current season. To model pruning mass going forward, the best approach is to start 41 

measuring it. Further work is still needed to develop robust, local site-specific yield and pruning 42 

mass models for operational decision-making in concord vineyards. 43 

Introduction 44 

High-resolution agri-data sets, especially from proximal, terrestrial mounted sensing 45 

systems, are available for vineyard managers but not yet widely commercially adopted (Tardaguila 46 

et al. 2021). Following trends in precision agriculture in other cropping systems, spatial canopy 47 

vigor data and apparent soil electrical conductivity (ECa) data have tended to be the main types of 48 

data collected (Arno et al. 2009, Matese and Di Gennaro 2015). These data have helped to build 49 

systems for zonal management (sub-block) to promote differential management (Martinez-50 

Casasnovas et al. 2012, Targarkis et al. 2013, Bonilla et al. 2014). These data have also been linked 51 

to production attributes, particularly grape yield and quality attributes (e.g. Lamb et al. 2008, Hall 52 

et al. 2011, Bonilla et al, 2015). With a few exceptions, most attempts to link ancillary canopy and 53 

soil data to vineyard production have focused on data collection at specific phenological stages. 54 

For example, the use of imagery around veraison, when vegetative vine development tends to cease 55 
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in favor of reproductive (yield) development, have supported estimations of vine size (e.g. 56 

Dobrowski et al. 2003, Drissi et al. 2009, Kazmierski et al. 2011, Hall et al. 2011). This is based 57 

on the assumption that at veraison the maximum vine size for the season has been achieved, but 58 

the process of senescence, which decreases the photosynthetically active biomass of the vine, is 59 

yet to have a significant effect on the canopy sensor response. However, from an in-season, 60 

operational point of view, vine size information at veraison in many systems is too late in the 61 

season to perform operations that will significantly alter crop load (vine balance) via canopy 62 

thinning. Avenues to effective vine management for targeted production (especially quality) goals 63 

are limited by information and decision-making at or after veraison.  64 

For effective, operational decision-making in-season, producers require information earlier 65 

in the season. Early to mid-season canopy sensor data has been linked to crop production, although 66 

the results published have been variable and concentrated on wine production systems in warm to 67 

hot climates (e.g. Pastonchi et al. 2020, Kasimati et al. 2021, Yu et al. 2021, Sams et al. 2022). 68 

These studies have also tended to focus only on univariate analyses, rather than formal multivariate 69 

model development, between in-season canopy sensor data and production attributes. Yield 70 

elaboration in grapes is known to be a multi-annual process, with primordia development for the 71 

yield in year n affected by vine conditions in year n-1 (Pratt 1971, Laurent et al. 2021). Despite 72 

this well-known effect, site-specific vineyard yield and quality models have yet to be proposed 73 

that include year n-1 data. 74 

The biennial fruiting effect in Vitis sp is of particular importance in systems where a 75 

production driver is limiting. Typically, this is either water in non-irrigated hot climate production 76 

or temperature in cool climate production, although poor management can lead to unbalanced 77 
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vines in any production system. Concord (Vitis labruscana Bailey) juice grape production in the 78 

Lake Erie American Viticulture Area (https://www.ecfr.gov/current/title-27/chapter-I/subchapter-79 

A/part-9/subpart-C/section-9.83 (accessed June 2022)), a cool climate region, operates under such 80 

a temperature limitation and the importance of managing crop load to achieve a sustainable and 81 

profitable annual level of production is well understood (Bates et al. 2021). If the fruit load set is 82 

too high for the vine size (i.e. the leaf area available to generate photosynthate), growers will often 83 

perform crop thinning (or be advised to crop thin) to ensure berry maturity at harvest and to protect 84 

the return crop the following year. Production parameters, notably the berry growth curve, and 85 

production practices dictate that crop estimation and subsequent thinning practices are best 86 

performed at ~30 days after bloom in this AVA (mid to late July) (Bates 2003, Bates 2017). 87 

Therefore, to make good crop thinning decisions, growers need information on the amount of fruit 88 

set (yield potential) and the vine size at this stage and, in addition, they need information on the 89 

spatial variability of both these attributes that do not necessarily follow the same spatial patterning 90 

(Bates et al. 2018, Taylor et al. 2019). However, Lake Erie concord grape growers do not currently 91 

have this information. 92 

The absence of the right information in mid-July invariably leads to uncertainty in the crop 93 

thinning decision-making. Action and inaction at this point has potential consequences. Removing 94 

fruit in areas where the crop load is good immediately affects (decreases) profit, while not acting 95 

to remove fruit in overcropped areas has potential quality control implications at harvest (delivery 96 

of mature fruit) and affects the return crop and potential yield/profit in the following year. 97 

However, once the fruit is set, by dropping fruit the growers are reducing yield and potentially 98 

income, which in general they are loathed and risk-adversed to do. Promoting decision-making 99 

https://www.google.com/url?q=https://www.ecfr.gov/current/title-27/chapter-I/subchapter-A/part-9/subpart-C/section-9.83&sa=D&source=docs&ust=1655200312427554&usg=AOvVaw3NcnWJAso5fk9hbqY2AS3v
https://www.google.com/url?q=https://www.ecfr.gov/current/title-27/chapter-I/subchapter-A/part-9/subpart-C/section-9.83&sa=D&source=docs&ust=1655200312427554&usg=AOvVaw3NcnWJAso5fk9hbqY2AS3v
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and good practices around crop load management is very reliant on having good information at 100 

the right time and, if it is to be done in a differential manner, good spatial information as well. At 101 

the moment, the Lake Erie Concord juice grape industry has no protocols or industry 102 

recommendations regarding the best type(s) of data and the best timing(s) of data collection to 103 

provide timely in-season crop load information.  104 

Vegetative and reproductive development of any individual vine will be very dependent on 105 

the environment in which it is grown. It will be influenced by micro and macro-climatic effects 106 

and interactions with the soil and local terroir. The vine’s vegetative and reproductive 107 

development will also be interdependent to an extent. However, both processes are influenced by 108 

different external factors at different times, meaning that their relationship will not necessarily be 109 

a direct linear relationship. For example, a large vine in a fertile part of a vineyard may have a low 110 

fruit load in a given year due to adverse weather conditions during the development of the floral 111 

primordia in the previous year. Vines will also naturally compensate and redistribute resources 112 

between vegetative and reproductive organs based on local, seasonal conditions. The implication 113 

is that yield elaboration is complex. Canopy development is also dependent on multiple, variable 114 

environmental conditions, in particular access to soil water and to thermal units. In this reality, and 115 

with increasingly larger access to spatial agri-data sets, the recent rapid rise in machine-learning 116 

algorithms, particularly non-linear methods, should provide better insights into how to use these 117 

new spatial agri-data to improve operational decision-making in vineyards.  118 

Machine-learning (ML) algorithms have been widely applied to the issue of yield 119 

prediction in agriculture (Chlingaryan et al. 2018). In viticulture, ML has predominantly been 120 

applied in image processing situations for either berry or bunch counting (e.g. Liu et al. 2020, 121 
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Kierdorf et al. 2022, Palacios et al. 2022) to assist with yield estimation mid-season. However, 122 

machine-learning approaches are not limited to image analysis, and can be used to identify 123 

preferred predictors (variables) within models and to reduce data requirements (Xu et al. 2021), 124 

especially in situations where auto-correlated spatio-temporal information is available (Nyéki et 125 

al. 2021). However, such applications in viticulture have not been reported to date.  126 

Therefore, the primary aim of this paper is to compare common linear and non-linear 127 

machine-learning approaches to site-specific modelling of grape yield and vine size in Concord 128 

vineyards, where vine size is defined as the pruned mass of first-year wood on the vine. By using 129 

site-specific, spatial historical information on crop load (yield and vine size in the previous year), 130 

spatial soil maps, and spatio-temporal canopy information throughout the growing season, the 131 

intent is to provide clear information to growers on the optimal type and timing of sensor data, in 132 

an operational setting, which will be required to provide the best information to aid site-specific 133 

decision-making in these vineyard systems. It is not the intent to develop or to test the robustness 134 

and transferability of these models, as each vineyard system is likely to require some level of local 135 

calibration to have effective prediction models (Ballesteros et al. 2020).  136 

Materials and Methods 137 

Site description. All data were collected from a 2.6 ha (6.4 ac) Concord vineyard located 138 

at the Cornell Lake Erie Research and Extension Laboratory (CLEREL) (42.3766, -79.4861, 139 

WGS84). The block is located on a north facing slope with E-W oriented rows, which differs 140 

from the N-S norm in this region. Vines are planted on the industry standard spacing of 2.44 m 141 

between vines and 2.74 m between rows (8 ft vine x 9 ft row spacing in the local vernacular), 142 

trained to a single-wire bi-lateral cordon (~1.83 m or 6 ft), and cane pruned to 100-120 143 
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nodes/vine. The trellis is supported by wooden posts after every third vine. The block is managed 144 

using commercial best practices (Jordan et al. 1980, Weigle et al. 2020) and is reserved for 145 

applied commercially-oriented trials by the Lake Erie Regional Grape Program. The vineyard is 146 

not irrigated and there was no in-season canopy management (hedging) or yield-thinning 147 

performed during the study (2018-21). 148 

Data collection. Sampling scheme. To simplify sampling and record-keeping (and mimic 149 

conditions closer to commercial situations) the sampling design was a semi-regular grid based on 150 

rows and ‘panels’ (3-vine groupings between wooden posts) within rows. Excluding the end 151 

rows and the end panels, where production conditions are different, every second row was 152 

sampled with every second panel sampled within these rows. Row lengths differed slightly 153 

(irregular shaped block) but there were 22 rows sampled with 14-15 panels per row resulting in 154 

321 samples within the vineyard block (Fig. 1)  155 

Yield data. Yield data in 2018, 2019, 2020 and 2021 were collected during normal grape 156 

harvest operations with an OXBO YieldTracker system on an OXBO 6030 mechanical grape 157 

harvester (Oxbo International Corp., Lynden, WA). Data from the yield monitor were geo-located 158 

with an Ag Leader 7500 WAAS corrected GPS receiver (Ag Leader, Ames, IA, USA) and 159 

collected with an Ag Leader 1200 InCommand field computer. In 2018 the harvester was also 160 

equipped with an Advance Viticulture Grape Yield Monitor (GYM) system (sensor and data 161 

logger) (Joslin, South Australia) linked to a WASS-corrected Ag Leader 7500 GNSS receiver. The 162 

GYM has been previously shown to be an effective yield monitoring system in this region (Taylor 163 

et al. 2016). A comparison of the Ag Leader and GYM yield sensor data and maps showed a strong 164 

correlation between the two sensing systems in 2018 (r = 0.70, data not shown). The OXBO 165 
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YieldTracker yield maps in all four seasons (2018-21) showed coherent patterning and were 166 

considered to be a good representation of the spatial yield variance in the block. In all years, the 167 

sensor yield data were adjusted to reflect the mean tonnage delivered from the field to the 168 

processing plant. The three target years had different mean yield profiles; 2019 was an average 169 

year (6.8 Mg/ha), 2020 was lower yielding (5.4 Mg/ha) and resulted (with favorable conditions) 170 

in the establishment of an above average yield in 2021 (11.2 Mg/ha). 171 

Pruning mass (PM) data. The mass of first year pruned canes was collected and weighed 172 

for the entire panel at each of the designated 321 sample locations in the vineyard. A panel is the 173 

distance between two posts in the vineyard row, which typically contains 3 vines and is ~7.3 m (or 174 

24 ft) in length. Measurements at the panel associated with each sample point, rather than the 175 

individual vine at each sample point, were performed to avoid short-scale stochastic variance 176 

effects and in line with local recommendations for mapping PM (Taylor and Bates 2012, Taylor 177 

et al. 2017). 178 

Soil sensing data. In May of 2019 and 2020 and June of 2021, the vineyard was surveyed 179 

with a DualEM 1s sensor ((DUALEM Inc., Mississauga, Ontario, Canada) mounted on a PVC 180 

pipe-based sled and towed behind an all-terrain vehicle. The sensor travelled along the center of 181 

every second inter-row (~1.35 m from the line of the vine trunks and their supporting wires). 182 

Apparent electrical soil conductivity (ECa) was recorded at two depths of ~0.5 m and ~1.6 m 183 

(shallow and deep respectively). Sensor data were recorded with a GeoSCOUT X field data logger 184 

with an internal GPS receiver (Holland Scientific, Lincoln, NE). It is noted that the high resolution 185 

soil maps in all years were very similar (r > 0.95, data not shown), which was expected given that 186 

that this is a cool-climate region and in spring (May/June) the soil is typically near field capacity 187 
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following high precipitation (mainly in the form of snowfall) and little evapotranspiration over the 188 

winter months. Therefore, if the data is correctly collected, the maps should reflect stable textural 189 

differences across the block.  190 

Phenology data. The experimental station records the dates of the main phenological stages 191 

for the region, including budbreak, bloom, veraison and maturity/ripening profiles leading up to 192 

harvest. Dates of budbreak, bloom and veraison were recorded at the 50% achievement date (Table 193 

1). These dates were used to synchronize the calendar dates of the canopy surveys to the 194 

phenological stages.  195 

Canopy sensing data. Canopy surveys were performed using the CropCircle ACS-430 196 

(Holland Scientific Inc, Lincoln, NE, USA) mounted on an All Terrain Vehicle (ATV) following 197 

the protocol established by Taylor et al. (2017) in these production systems to sense the side curtain 198 

of the canopy. The ACS-430 is a 3-band active multispectral sensor that collects reflectance 199 

information in the Red (670 nm), Red-edge (730 nm) and Near-Infrared (780 nm) regions of the 200 

electromagnetic spectrum. Two sensing systems were used and oriented to either side of the ATV 201 

to image both left and right (different rows) as the sensing platform passed down the inter-row. 202 

Every second row was traversed by the ATV. Therefore, the sensors captured data from one side 203 

of every canopy row, i.e. both the sampled and non-sampled rows in the vineyard. For early season 204 

surveys, before the side curtain of the canopy had started to develop, sensors were oriented at the 205 

high-wire cordon (~1.8 m height) and then progressively lowered as shoots lengthen until a 206 

minimum height of 0.8 m. There were 8, 13 and 18 campaigns carried out in 2019, 2020 and 2021 207 

respectively, generating a relatively dense time-series of data, especially in the latter years.  208 
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Data analysis. Pruning mass data existed as manual measurements at each sample point; 209 

however, the yield, soil ECa and canopy sensing data were collected from a moving vehicle at 1 210 

Hz and generated irregular data points. To collate the PM and various sensor data, the sensor 211 

data were interpolated onto the 321 sample sites using block kriging (7 m2) with a local 212 

variogram structure using Vesper shareware (Minasny et al. 2005). The choice of block size 213 

reflected the panel area from which the PM measurements were derived. 214 

For each data type, histograms of the data were generated and nonsensical values, e.g. yield 215 

< 0 t/ha or NDVI > 1 and NDVI < 0, were removed in a first step before a manual light-touch data-216 

cleaning was performed to remove outlying points. In all cases less than 3% of data were removed 217 

in this step. For the ECa data, both the shallow and deep responses were interpolated. For the 218 

CropCircle response, the three bands, Red (R), Red-edge (RE) and Near Infra-Red (NIR) were 219 

individually interpolated (i.e. three interpolations performed at each date), before the interpolated 220 

bands were used to construct seven different vegetative indices using combinations of the three 221 

bands (Table 2). This made reconstruction of the various vegetative indices (VIs) a relatively 222 

simple process. An alternative, more laborious process would be to calculate each vegetative index 223 

(VI) from the cleaned band data and then interpolate each individual VI (i.e. seven interpolations 224 

at each date). The band interpolation approach was preferred here. The manually measured PM 225 

and interpolated yield data were used to create Crop Load values at each site for 2018-20. 226 

After interpolation and processing, a spreadsheet was generated with yield and PM for four 227 

years (2018-21), Crop Load (2018-20), Soil ECa deep and shallow (2019-21) and the seven VIs at 228 

multiple dates from 2019-21 (see Table 3 in results for dates), which were all co-located on the 229 
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center of the panel (3-vine section) in the vineyard that was the basic sampling unit. This formed 230 

the dataset used in the modelling exercise.  231 

Modeling. Stepwise Multivariate Linear Regression (S-MLR) was selected as the linear 232 

modelling approach to be tested, while Random Forest Regression (RFR) was used for the non-233 

linear approach. A stepwise approach to linear regression was used to avoid over-fitting with the 234 

large number of highly-correlated spatio-temporal VI data layers available in the models. For both 235 

approaches four basic model constructions were tested. These were; 236 

● Model 1: Predictions using only historical vine production data (yield, PM and Crop 237 

Load from the previous year, i.e. year n-1) and pre-season soil information (Deep and 238 

Shallow ECa). This tests the hypothesis that vegetative and reproductive development in 239 

year n is predominantly driven by the previous season’s (year n-1) yield and PM.  240 

● Model 2: Predictions using spatio-temporal in-season canopy observations from 241 

early to late season surveys. This tests the hypothesis that the evolution of the vine canopy 242 

in year n is the main driver of yield and PM in year n, i.e. it is in-season development, and 243 

not year n-1 development, that drives production. 244 

● Model 3: Combines the predictors from both Model 1 and 2 to predict yield and 245 

PM. This tests the hypothesis that yield and PM in year n is influenced by production in 246 

year n-1 and vine development throughout the season in year n. 247 

● Model 4 presents a simplified version of Model 3, where canopy information is 248 

limited to a single survey just prior to the date of crop estimation in these vineyard systems 249 

(Bloom date + 30 days). This considers that multi-temporal surveys are not always feasible 250 

and the best time to generate information from a single survey is likely to be when canopy 251 
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development is approaching maturity (full vine size) and just before growers need 252 

information to inform crop estimation.  253 

Random forest regression modelling. Random forest algorithms can be used for either 254 

classification or regression (Breiman 2001). In this study, with the intent to predict continuous 255 

vineyard variables (yield and PM), the random forest regression (RFR) approach was used. 256 

Briefly, the Random Forest algorithm is a combination of decision trees (Rokach et al. 2005). 257 

Each tree is generated from values taken randomly from the inputs available, making each tree 258 

slightly different. The result of the machine learning algorithm comes from the average result of 259 

many trees (the number of trees is a parameter of the algorithm).  260 

The RFR was run for each Model type (M1-4) respecting the availability of predictor 261 

variables for each Model type. For model training, regardless of Model type, 10 iterations were 262 

performed, with the dataset randomly separated for each iteration into a training and a test data set, 263 

with 70% of points assigned to the training set and the remaining 30% to the test data set 264 

(equivalent to 224 and 97 sites respectively). The output of the Random Forest regression for each 265 

Model type was used to calculate the score of explained variance (EV) between the observed (y) 266 

and predicted (ŷ) test data (Eqn. 1) and mean absolute error (MAE) (Eqn. 2) as indicators of model 267 

performance.  268 

Explained Variance = 1 − 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦−ŷ)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)

    Equation 1 269 

MAE = ∑ |ŷ−𝑦𝑦|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
      Equation 2 270 

The order and the power of each predictor variable selected in the RFR was also extracted 271 

and the first five most powerful predictors recorded. Random Forest regression was implemented 272 
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in Python using the package Scikit-learn (mainly RandomForestRegressor and metrics) (Pedregosa 273 

et al. 2011) with the following fixed parametrization: number of estimators (trees) = 150, 274 

maximum number of features the RF considers to split a node = 40, minimum sample leaves in a 275 

node = 1 leaf. These values were selected using a sensitivity analysis based on curve fitting to 276 

identify suitable values for these data and models.  277 

Stepwise Multivariate Linear Regression (S-MLR) modelling. Full linear models using all 278 

relevant predictors for each Model type (M1-4) were constructed in R (R Core Team, 2022). The 279 

step function in the olsrr package (Hebbali 2020) was used to generate the most parsimonious 280 

model using a forward step approach and a threshold value of p = 0.01 to accept a new predictor 281 

into the model. Model evaluation was achieved by using a cross-validation with the same 282 

training and test data sets established for the RFR approach applied independently to the yield 283 

and to the PM dependent variables. For each training-test pair (10 iterations), the S-MLR model 284 

was constructed on the training set and then applied to the test set. The number and order of 285 

predictors selected in each of the iterations, for each Model and dependent variable, were 286 

recorded. The dominant predictor selected at each step-wise iteration, along with the number of 287 

times it was selected among the 10 iterations, was then extracted. The EV (Eqn. 2) from the 288 

observed and modelled test data for the 10 iterations was calculated. This provided an equivalent 289 

estimation of the variance explained by each Model type. 290 

Mapping. Maps of selected dependent and independent variables used in the modelling 291 

were generated by performing local block kriging with a local variogram for the high-resolution 292 

sensor data (yield, soil ECa, VIs) and using block kriging with a global variogram for the manual 293 

observations (PM), again using a 7 m2 block. All interpolation was performed in the Vesper 294 
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freeware (Minasny et al. 2006). Post-interpolation but prior to mapping, data values were 295 

standardized [0,1] across all layers using Eqn. 3 so that they could be presented on a common 296 

legend. 297 

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑦𝑦−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

      Equation 3 298 

Where ystd is the standardized value for a given attribute and ymin and ymax are respectively 299 

the minimum and maximum values of y within the data (vineyard block). 300 

Results 301 

The direct observations in Table 1 and subsequent transformations in Table 3 show the 302 

differences in phenology at given dates (days of the year). Budbreak was the most variable 303 

phenological stage, with 26 days difference between 2020 and 2021. However, as the season 304 

progressed the dates of floraison, and then veraison, tended to get closer between years. In Table 305 

3, there were common dates for surveys between years, e.g. 9th of July, that showed phenological 306 

differences with a 7-day difference from floraison on this date between 2020 and 2021. This 307 

illustrated the potential need to consider the timing of data collection, particularly for the temporal 308 

canopy surveys, relative to phenology, and not the date (day of the year), when determining 309 

preferred times for data acquisition in vineyard systems. 310 

Tables 4 and 5 show the calculated EV (Eqn 1) and MAE (Eqn 2) respectively for all the 311 

model iterations (2 dependent variables (Yield and PM) by 4 Model Types (M1-4) by 2 regression 312 

approaches (S-MLR and RFR)). For the yield modelling (Table 4), the RFR approaches 313 

consistently outperformed the equivalent S-MLR approach, with Model 3 (M3) generating the best 314 

results from the cross validation approach. An analysis of the key predictors selected in the M3 315 

RFR approach (Table 6) clearly showed a preference for canopy sensing information in the week 316 
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before floraison, with this information selected in the top two strongest model predictors in all 3 317 

years. The DifVI appeared to be the most commonly selected VI across the years at this stage, 318 

although it was not the only VI with a strong prediction power in any given year, e.g. RECI at 4 319 

DBF (days before bloom) was selected in 2021. The yield in year n-1, was only of importance in 320 

2021, and the PM or ECa information did not appear in the top 5 most powerful predictors in any 321 

year. It is noted that the M1 model, using only historical information had a very poor prediction in 322 

2019 for both linear and non-linear approaches. This is not to discount the value of these layers, 323 

especially the soil ECa maps that often help to interpret spatial production patterns, but rather to 324 

note that they were not particularly useful for this purpose. Given the lack of predictive power of 325 

the soil ECa layers and the (expected) inter-annual similarities in the layers, obtaining annual soil 326 

ECa scans is unlikely to be of any real production benefit to growers.  327 

For the PM modeling, the linear modelling (S-MLR) performed better than the non-linear 328 

(RFR) approach, with M1, 3 and 4, that all contained the PM in year n-1, performing in a similar 329 

manner (EV > 0.730). This is because the previous year’s PM was the dominant predictor of the 330 

PM in the current season (Table 6). Model 2, using only in-season canopy data, generated poor 331 

prediction fits for both linear and non-linear approaches (EV < 0.237 for all years). Model 3 had 332 

slightly better fits (higher EV, lower MAE) than M1 and M4, based on the inclusion of some 333 

canopy sensor data in the modelling; however, there was no clear trend in model predictors 334 

identified across the three years in regards to a preferred VI to collect or a preferred date of VI 335 

collection (Table 6). To complement the information in Table 6, which only shows predictors from 336 

the best performed models, the top predictors for all model iterations (Models 1-4 with S-MLR 337 

and RFR for PM and yield) are provided in the supplementary information (Table S1). These 338 
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predictors should be considered together with the information in Tables 4 and 5 on the quality of 339 

the prediction from each model type. 340 

Discussion 341 

The principal objective for this analysis was to compare how well a linear and a non-linear 342 

algorithm were in modelling site-specific grapevine yield and PM using various, mainly sensor-343 

based, ancillary data layers. The non-linear Random Forest Regression (RFR) model worked better 344 

with yield prediction, while the Stepwise Multivariate Linear Regression (S-MLR) was the 345 

preferred approach for modelling PM. Yield determination in grapes is a complex process, starting 346 

with primordia development during the previous season and influenced by environmental and plant 347 

conditions on cluster numbers, cluster size (berries/cluster) and berry weight all the way through 348 

to the final harvest, i.e. it is a non-linear process, and is better modelled using a non-linear 349 

algorithm. In contrast, the vine PM is a direct reflectance of the vegetative vigor of the vine during 350 

the season, which in turn is directly influenced by water and nutrient availability/uptake and 351 

indirectly by crop load. Water and nutrient availability to the vine is itself a result of seasonal 352 

conditions in non-irrigated cool climate vineyards. As there was no differential or variable rate 353 

management to the soil or vines to externally influence PM, and the crop load was “moderate”, so 354 

that general management was not creating any extreme effects, the evolution of PM in this vineyard 355 

should be a simple response to seasonal growing conditions, i.e. it is a more straightforward, linear 356 

process. Consequently, the simpler linear model was still able to effectively model this vegetative 357 

development.  358 

There were four constructs of models (M1-4), using different potential combinations of 359 

input variables, evaluated with the linear and non-linear approaches. These input variables were 360 



 
American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2022.22050 

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal  
or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes. 

 

17 
 

key data layers related to production in the previous year (yield, PM, Crop load) and the current 361 

season (soil and canopy). The choice of these constructs were based on the potential access to these 362 

data by growers, with M3 being the universal model that used all potential data sources. It is 363 

unsurprising, given the complete nature of the inputs used, that M3 produced the best results for 364 

the yield modelling. However, M1 and M4 performed poorly in site-specific yield prediction, 365 

relative to M3. Both of these had no (M1) or only one (M4) mid-season predictor in the modelling. 366 

Model 2, which only used multi-temporal canopy data, outperformed M1 and M4, and had EVs 367 

and MAEs that were approaching those achieved by M3 in all three years. This similarity in yield 368 

prediction between M2 and M3 was expected given that the dominant predictors selected by the 369 

non-linear RFR model were VIs (Table 6). Of these predictors, VIs collected in the three weeks 370 

leading up to floraison, i.e. early season canopy sensing, were identified as key predictors of yield. 371 

Several different types of VIs were selected across the three years; however, the DifVI index was 372 

the most common higher-order predictor in the data set. This is in accordance with an industry 373 

wide survey of Taylor et al. (2021) that assessed various VIs against PM in Concord vineyards in 374 

this region. However, the choice of DifVI generally only generated a marginal gain in prediction 375 

quality due to the strong collinearity between the different VIs. When canopy data was limited to 376 

only a late season (veraison) survey (M4), yield predictions were poor. These results clearly 377 

indicated that it is the early season canopy vigor in this cool-climate, juice grape system, and not 378 

the mid/late-season vigor, that reflects yield development and the final yield. Growers should 379 

target canopy sensing pre-floraison in these Concord production systems. The spatial pattern of 380 

canopy vigor around the time of crop estimation (30 days after floraison) was less representative 381 
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of yield patterns in the vineyard block in all three years (lower quality of prediction with M4 – 382 

Tables 4 and 5). 383 

The 2019 yield prediction models that relied on the 2018 year n-1 data (M1 and M4) 384 

performed poorly when compared to other models in 2019, or to the equivalent models in the other 385 

years (2020-21). The initial reason for this was unclear, and these data and models were verified. 386 

The maps (Fig 2) showed that there was a potential management effect in the southern part of the 387 

block, with higher (blue) vigor at veraison that translated into higher yield as well. This was an 388 

unintentional spatial management effect that will have confounded the model assumptions. 389 

Additionally, there was a significant amount of vine renewal work performed spatially in 2018 390 

that that may also have locally (site-specifically) impacted the predictive ability of these year n-1 391 

(2018) data sets in 2019. By the end of the 2019 growing season, the vines had ‘stabilised’ and 392 

these management effects had been removed or lessened, with the M1 RFR model explaining 393 

~50% of the yield variation in 2020 and 2021. These results highlighted the issue that enabling 394 

variable management in a vineyard will have on production modelling. It is also worth noting that 395 

explaining 50% of the variance in site-specific yield with a MAE of < 3 Mg/ha, would still be of 396 

value to growers in a management context if further work can demonstrate that the models are 397 

robust. However, the objective here was to identify trends and useful predictors for such models 398 

and not the generation of robust, repeatable prediction models. 399 

For the PM modelling, the results were very different. The year n-1 PM data were very 400 

dominant as a predictor of the current season’s site-specific PM. Vine size and PM in these systems 401 

is variable and its dynamics are related to crop load, with under-cropped vines gaining PM while 402 

over-cropped vines will lose PM (Bates et al. 2021). Balanced vines will remain in a stable PM 403 
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state. In general, the vines in this study block were balanced, with Ravaz index values (Ravaz 404 

1911) in the low to mid 20s for 2018-19 and < 15 in 2020, which should either result in little 405 

change in site-specific PM from year to year (Taylor and Bates 2013). The strength of the previous 406 

year’s PM in the PM models reflects this. As this vineyard block has been well managed (well-407 

balanced vines) it is not possible with these data to infer if this relationship will hold true in 408 

‘unbalanced’ vineyards where the Crop load is low (< 10) or high (>30). The relative failure of 409 

M2, using only multi-temporal in-season canopy information, and the lack of a clear trend in VI 410 

predictors in any year (Table 6) was unexpected (EV < 0.2 in all three years, Table 4), given that 411 

late season canopy vigor maps have previously been related to PM in these systems (Taylor et al. 412 

2017). This previous work did recognize that PM is highly variable (vine-to-vine) (Taylor et al. 413 

2012) and that errors (differences) in co-located sensor and manual observations are to be 414 

expected. The protocol of Taylor et al. (2017) for relating PM to sensor-based NDVI data did allow 415 

for up to 15% of the data to be removed before modelling to improve model fits. In this study, no 416 

data were removed or ‘cleaned’ prior to modelling, but the sample size was 10-fold larger than 417 

that of Taylor et al. (2017) and it was expected that this ‘noise’ in the data would be accounted for 418 

in the modelling. However, this does not seem to be the case. Further work is needed to better 419 

understand the modelling limits here, but the clear indication is that relying only on VIs to model 420 

PM will be problematic. If vineyard blocks are well-managed (i.e. maintained at a good Crop load 421 

level) then the clear advice to growers would be to generate a high-quality PM map (from a 422 

combination of sensor surveys and manual observations) and to use this map going forward to 423 

predict PM. Subsequently years would likely only need minimal manual sampling to update and 424 

correct the map.  425 
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The results from the yield modelling clearly showed that the most effective information for 426 

understanding yield came from proximal canopy sensing in the period (1-3 weeks) immediately 427 

before floraison (bloom). It is recommended that canopy surveys for yield prediction and for 428 

identifying stratified sampling designs for crop yield estimation at 30 DAB should be done at this 429 

phenological stage. Canopy sensing pre-bloom for use in post-bloom crop estimation has the added 430 

advantage of providing time for the data to be processed and interpreted before crop estimation is 431 

performed. The modelling showed that late-season canopy sensing or historical (year n-1) 432 

production data were less relevant than pre-floraison canopy information for spatial in-season yield 433 

considerations. For PM, the best way to predict it is to start measuring it. Canopy sensing at any 434 

phenological stage was not a good direct predictor of PM. Using late-season/veraison canopy 435 

vigour and targeted PM measurements for a local calibration (Taylor et al. 2017) is one way to 436 

start to obtain a spatial PM data (and to start to build a temporal history). However, growers have 437 

yet to widely adopt such an approach and more automated, grower-friendly means of vine size 438 

(PM or leaf area index) remain a priority for the industry to make routine vine size measurements.  439 

From an operational perspective, the quality of the models generated here can be 440 

considered to be suitable for commercial management purposes. The MAE of the best yield model 441 

varied between years with differences in mean annual yields, but predictions were 2-8 % relative 442 

error across the three years (absolute errors of 0.3-1.9 Mg/ha or 0.1-0.8 tons/ac). The best PM 443 

modelling was also consistent but not as good, with 15-20 % relative error (0.08-0.14 kg/vine or 444 

0.2-0.3 lbs/vine). Having identified preferred data types and timings of acquisitions for site-445 

specific modelling of yield and PM, further work is needed to understand how robust, local models 446 

can be developed that are adaptable/transferable between different production systems. 447 
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Conclusion 448 

Sensor and manually observed data clearly showed that the spatial pattern of the current year’s 449 

yield potential is represented by the spatial pattern of canopy vigor in the weeks leading up to 450 

bloom, i.e. early season vigor relates to yield potential (and final yield without any crop 451 

interventions). Pre-bloom canopy vigor surveys should be used for directed crop estimations mid-452 

season (30-days post-bloom) and to model yield. The spatial patterning of vine PM in balanced 453 

vineyards is known to be stable and was shown to be best represented by historical, spatial PM 454 

information, rather than by spatio-temporal canopy vigor or by spatial soil information. Therefore, 455 

the best way to model and manage PM is to start measuring it. This still involves manual 456 

observations and more automated ways of PM mapping are required, although veraison canopy 457 

vigor mapping remains one way of approximating vine size. Growers should prioritize canopy 458 

vigor mapping pre-bloom and around veraison to have the best information for crop load 459 

management. A further conclusion was that complex site-specific processes, such as local yield 460 

development, were best described by a non-linear model, whilst local, in-season vegetative growth 461 

(PM), that is a less complex interaction, was best fitted using linear modelling approaches.  462 
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Table 1  Recorded day of the year (and date) for three key phenological stages the three years of 600 

the study (2019-21) at the Lake Erie Research and Extension Laboratory. 601 

Year Budbreak Floraison (Bloom) Veraison 

2019 128 (08/05) 171 (20/06) 238 (26/08) 

2020 136 (15/05) 166 (14/06) 234 (21/08) 

2021 110 (20/04) 158 (07/06) 232 (20/08) 

Note : Bloom +30 is same date in July from the June date. 602 

  603 
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Table 2  Vegetative indices (VIs) calculated from the three available bands of the CropCircle 604 

430 canopy sensor. 605 

Name Abbreviation Formula Reference 
Normalised Differences 
Vegetation Index 

NDVI (NIR-R)/(NIR+R) Rouse et al. 1974 

Simplified Difference Vegetation 
Index 

DifVI NIR – R Adapted from 
Richardson and 
Wiegand 1977 

Simple Ratio (or Plant Cell 
Density/Relative Veg. Index) 

SR (PCD/RVI) NIR/R Jordan 1969 

Normalised Differences Red-
Edge 

NDRE (NIR-RE)/ (NIR+RE) Barnes et al. 2000 

Modified Simple Ratio MSR R/sqrt((NIR/R)+1) Chen 1996 
Red-edge Chlorophyll Index RECI (NIR/RE)-1 Gitelson et al. 2003 
MERIS Terrestrial Chlorophyll 
Index 

MTCI (NIR-RE)/(RE-R) Dash and Curran 
2004 

  606 
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Table 3  Dates of canopy sensing surveys during the three years of the study translated into a 607 

phenological time indication (before or after budbreak, floraison and veraison) to indicate the 608 

asynchronicity of vine phenology between years. (Where DABB = Days After BudBreak, DBF = 609 

Days Before Floraison (Bloom), DAF = Days After Floraison, DBV = Days Before Veraison and 610 

DAV = Days After Veraison). 611 

Date of Canopy 
Surveys 

Timing relative to Phenology 
2019 2020 2021 

06 May 
  

16 DABB 
10 May 

  
20 DABB 

14 May 
  

24 DABB 
16 May 8 DABB 

  

21 May 
  

17 DBF 
26 May 

 
18 DBF 

 

27 May 
  

11 DBF 
31 May 20 DBF 

  

01 June 
 

13 DBF 
 

03 June 
  

4 DBF 
07 June 

  
Floraison 

09 June 
 

5 DBF 
 

10 June 10 DBF 
  

15 June 
 

1 DAF 
 

16 June 
  

9 DAF 
17 June 3 DBF 

  

24 June 4 DAF 
 

17 DAF 
26 June 

 
12 DAF 

 

29 June 
  

22 DAF 
01 June 

 
17 DAF 

 

09 July 
 

25 DAF 32 DAF 
15 July 

 
31 DAF 

 

19 July 29 DAF 
  

20 July 
  

31 DBV 
24 July 

 
28 DBV 

 

27 July 
  

24 DBV 
01August 25 DBV 

  

03 August 
 

18 DBV 17 DBV 
11 August 

  
9 DBV 

16 August 
  

4 DBV 
21 August 

 
Veraison 

 

30 August 4 DAV 
  

03 Sept. 
 

13 DAV 
 

07 Sept. 
  

18 DAV 
14 Sept. 

 
24 DAV 

 

16 Sept. 
  

27 DAV 

 612 

  613 
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Table 4  Explained Variance from cross-validation of four different specified models (using 614 

different available inputs) (M1 - M4) applied to two different regression approaches (Stepwise-615 

Multivariate Linear Regression (S-MLR) and Random Forest Regression (RFR)) across three 616 

years (2019-21). The models were recalibrated for each year before cross-validation using relevant 617 

available variables. Best performed model in each year indicated in bold. RFR results in italics. 618 

Predicted 
Variable 

Model 
Type 

Year 

2019 2020 2021 

 M1 - S-MLR 0.000 0.428 0.280 

 M1 - RFR 0.006 0.508 0.539 

 M2 - S-MLR 0.387 0.565 0.457 

Yield M2 - RFR 0.558 0.685 0.577 

 M3 - S-MLR 0.484 0.670 0.538 

 M3 - RFR 0.592 0.712 0.619 

 M4 - S-MLR 0.149 0.465 0.275 

 M4 - RFR 0.254 0.554 0.543 

 M1 - S-MLR 0.732 0.644 0.621 

 M1 - RFR 0.642 0.611 0.587 

 M2 - S-MLR 0.127 0.164 0.089 

Pruning Mass M2 - RFR 0.126 0.237 0.176 

 M3 - S-MLR 0.730 0.659 0.627 

 M3 - RFR 0.644 0.651 0.581 

 M4 - S-MLR 0.732 0.651 0.621 

 M4 - RFR 0.639 0.625 0.585 

 619 

  620 
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Table 5  Mean Average Error (MAE) (Mg/ha for yield and kg/vine) from cross-validation of four 621 

different specified models (using different available inputs) (M1 – M4) applied to two different 622 

regression approaches (Stepwise-Multivariate Linear Regression (S-MLR) and Random Forest 623 

Regression (RFR)) across three years (2019-21). The models were recalibrated for each year using 624 

the relevant available variables. Best performed model in each year indicated in bold. RFR results 625 

in italics. The higher yield MAE in 2021 is associated with a much higher mean yield in this year. 626 

Predicted 
Variable 

Model Type Year 

2019 2020 2021 

 M1 - S-MLR 0.442 1.159 2.818 

 M1 - RFR 0.430 1.056 2.210 

 M2 - S-MLR 0.350 1.024 2.347 

Yield M2 - RFR 0.278 0.836 2.015 

 M3 - S-MLR 0.316 0.892 2.213 

 M3 - RFR 0.267 0.800 1.899 

 M4 - S-MLR 0.397 1.114 2.831 

 M4 - RFR 0.350 0.968 2.197 

 M1 - S-MLR 0.082 0.131 0.142 

 M1 - RFR 0.093 0.143 0.148 

 M2 - S-MLR 0.146 0.217 0.221 

Pruning Mass M2 - RFR 0.146 0.206 0.211 

 M3 - S-MLR 0.082 0.128 0.142 

 M3 - RFR 0.092 0.136 0.151 

 M4 - S-MLR 0.082 0.131 0.142 

 M4 - RFR 0.093 0.140 0.149 

 627 

  628 
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Table 6  The key predictors and timing of data acquisition (expressed as phenological time) in 629 

each year from the best performed models identified from Tables 4 and 5. For the Random Forest 630 

Regression (RFR), the first five predictors are shown with the prediction power from the cross-631 

validation given in parentheses. For the Stepwise Multi-Linear Regression (S-MLR) the order 632 

reflects the stepwise progression with the dominant predictor at each step given along with the 633 

number of times (out of 10) it was selected in the cross-validation process. Acronyms for VIs are 634 

the same as Table 2. 635 

Variable Model Year Principal (ordered) predictors 

 
 

2019 DifVI_03DBF (0.115), SR_20DBF (0.0719), NDVI_20DBF (0.0549), 

MSR_03DBF (0.0531), SR_03DBF (0.0449) 

Yield M3 - RFR 2020 DifVI_13DBF (0.1667), DifVI_05DBF (0.1015), SR_05DBF (0.0547), 

NDVI_05DBF (0.0403), NDVI_18DBF (0.0341) 

 
 

2021 RECI_04DBF (0.0911), Yield_2020 (0.0738), DifVI_04DBF (0.0469), 

NDRE_04DBF (0.038), RECI_11DBF (0.0245) 

Pruning 

Mass 

(PM) 

 
2019 PM_2018 (10) 

M3 - S-MLR 2020 PM_2019 (10), RECI_05DBF (10), MSR_13DAV (6) 
 

2021 PM_2020 (10), Various VIs at various dates… 

    

  636 
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 637 
 638 

Figure 1  Location of the midpoint of the sampled panels within the 2.6 ha study block at the 639 

Cornell Lake Erie Research and Extension Laboratory, Portland, NY. 640 
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Figure 2  Maps of some key dependent and independent model variables to illustrate spatio-temporal patterning in the block. All data 
presented on a common standardized (0 – 1) legend based on the maximum and minimum values in each layer. 

Variable Year 
 2018 2019 2020 2021 

Pruning Mass (from hand 
sampling post-season) 

    

Yield (from AgLeader yield 
monitor) 

    

Shallow Apparent 
Soil Electrical Conductivity 
(ECa) (from DualEM-1s 
sensor) 

[No scan 
made in this 

year] 
 

    

Normalised Differences 
Vegetaive Index (NDVI) at 
Veraison (from CropCircle 
canopy sensor) 
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Supplemental Table 1  The key predictors and timing of data acquisition (expressed as phenological time) in each year from all 

models generated in the study. For the Random Forest Regression (RFR), the first five predictors are shown with the prediction power 

from the cross-validation given in parentheses. For the Stepwise Multi-Linear Regression (S-MLR) the order reflects the stepwise 

progression with the dominant predictor at each step given along with the number of times (out of 10) it was selected in the cross-

validation process. Acronyms for VIs are the same as Table 2. Acronyms for phenological stages are the same as for Table 3. 

Predicted 
Variable Model Type Year Order of Predictors 

Yield 

 2019 Yield_2018 (6) 

M1 - S-MLR 2020 Yield_2019 (9); ShallowECa_2019; DeepECa_2019; PM_2019 
 2021 Yield_2020 (10); PM_2020 (5) 

 2019 Yield_2018 (0.2694); DeepECa_2019 (0.2579); CropLoad2018 (0.192); ShallowECa_2019 (0.1647); PM_2018 (0.1159) 

M1 – RFR 2020 ShallowECa_2020 (0.3317); Yield_2019 (0.2816); DeepECa_2020 (0.2238); CropLoad_2019 (0.097); PM_2019 (0.0659) 

 2021 Yield_2020 (0.4298); DeepECa_2021 (0.1389); ShallowECa_2021 (0.1126); CropLoad_2020 (0.108) 
 2019 MSR_3 DBF (10); SR_20 DBF (8); RECI_8 DABB (9); Various VIs at various dates 

M2 - S-MLR 2020 DifVI_5 DBF (10); MTCI_Veraison (9); MTCI_1 DAF (6) 
 2021 DifVI_4 DBF (10); Various VIs 9 DAF (8) 

 2019 DifVI_3 DBF (0.1193); SR_20 DBF (0.0738); NDVI_20 DBF (0.0598); MSR_13 DBF70619 (0.0563); MSR_20 DBF (0.0505) 

M2 – RFR 2020 DifVI_13 DBF (0.189); DifVI_5 DBF (0.1036); SR_5 DBF (0.0493); NDVI_5 DBF (0.0418); NDVI_18 DBF (0.0316) 

 2021 RECI_4 DBF (0.1009); DifVI_4 DBF (0.051); NDRE_4 DBF (0.0406); RECI_11 DBF (0.0263); SR_4 DBF (0.0245) 
 2019 MSR_3 DBF (10); SR_20 DBF (8); DeepEC (7); RECI_8 DABB (5) 

Yield 
M3 - S-MLR 2020 DifVI_5 DBF (8); MTCI_Veraison (8); DeepECa_2020 (5) 
 2021 DifVI_4 DBF (10); Yield_2020 (10); Various VIs at various dates… 
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Predicted 
Variable Model Type Year Order of Predictors 

 2019 DifVI_3 DBF (0.115); SR_20 DBF (0.0719); NDVI_20 DBF (0.0549); MSR_3 DBF (0.0531); SR_3 DBF0.0449 

M3 – RFR 2020 DifVI_13 DBF (0.1667); DifVI_5 DBF (0.1015); SR_5 DBF (0.0547); NDVI_5 DBF (0.0403); NDVI_18 DBF (0.0341) 

 2021 RECI_4 DBF (0.0911); Yield_2020 (0.0738); DifVI_4 DBF (0.0469); NDRE_4 DBF (0.038); RECI_11 DBF (0.0245); SR_4 DBF (0.0205) 

 2019 SR_29 DAF (10); NDRE_29 DAF90719 (9); Yield_2018 (9) 

M4 - S-MLR 2020 Yield_2019 (9); ShallowEC (8); DeepEC (8); MSR_090720 (8) 
 2021 Yield_2020 (10); PM_2020 (7); CropLoad_2020 (2) 

 2019 Yield2018 (0.149); SR_29 DAF (0.1447); DeepECa_2019 (0.1319); ShallowECa_2019 (0.1193); MSR_29 DAF (0.1154) 

M4 – RFR 2020 ShallowECa_2020 (0.2721); Yield_2019 (0.231); DeepECa_2020 (0.1647); CropLoad_2019 (0.0533); MSR_31 DAF (0.0486) 

 2021 Yield_2020 (0.3894); ShallowECa_2021 (0.0877); CropLoad_2020 (0.0749); DeepECa_2021 (0.0572); MSR_22 DAF (0.0571) 

Pruning 
Mass 

 2019 PM_2018 (10) 

M1 - S-MLR 2020 PM_2019 (10); ShallowECa_2020 (10); DeepECa_2020 (10) 
 2021 PM_2020 (10); CropLoad_2020 (2) 

 2019 PM_2018 (0.4886); CropLoad_2018 (0.3138); Yield_2018 (0.0762); ShallowECa_2019 (0.0624); DeepECa_2019 (0.0591) 

M1 – RFR 2020 CropLoad_2019 (0.4063); PM_2019 (0.2971); DeepECa_2020 (0.1247); ShallowECa_2020 (0.0926); Yield_2019 (0.0793) 

 2021 PM_2020 (0.659); CropLoad_2020 (0.0842); Yield_2020 (0.067); DeepECa_2021 (0.053); ShallowECa_2021 (0.0479) 

 2019 Various VIs at 4 DAV (8) or 25 DBV (2) 

M2 - S-MLR 2020 NDVI_13 DAV (10); Various VIs at various dates 
 2021 SR/DifVI_4 DBF (9); Various VIs_160921 (7) 

Pruning 
Mass 

 2019 MTCI_4 DAV (0.0494); DifVI_20 DBF (0.0485); DifVI_4 DAV (0.0442); RECI_4 DAV (0.0333); SR_4 DAV (0.0315); 
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Predicted 
Variable Model Type Year Order of Predictors 

M2 – RFR 2020 SR_ 24 DAV (0.0591); MSR_13 DAV (0.0413); SR_18 DBF (0.0292); SR_13 DAV (0.0261); NDVI_13 DAV (0.0257) 

 2021 MTCI_17 DAF (0.0286); SR_24 DBV (0.0211); SR_17 DAF (0.0206); MSR_17 DAF (0.0186); MTCI_24 DBV (0.0182) 
 2019 PM_2018 (10) 

M3 - S-MLR 2020 PM_2019 (10); RECI_5 DBF (10); MSR_13 DAV (6) 
 2021 PM_2020 (10); Various VIs at various dates… 

 2019 PM_2018 (0.3693); CropLoad_2018 (0.2813); DifVI_20 DBF (0.0206); MTCI_4 DAV (0.0119); RECI_20 DBF (0.0105) 

M3 – RFR 2020 CropLoad_2019 (0.2431); PM_2019 (0.2354); SR_24 DAV (0.022); MSR_13 DAV (0.0174); MTCI_12 DAF (0.0126) 

 2021 PM_2020 (0.2805); CropLoad_2020 (0.137); MTCI_17 DAF (0.0141); Yield_2020 (0.0125); MSR_17 DAF (0.0105); SR_24 DBV (0.0103) 

 2019 PM_2018 (10) 

M4 - S-MLR 2020 PM_2019 (10); ShallowECa_2020 (10); SR_090720 (8) 
 2021 PM_2020 (10); CropLoad_2020 (2) 

 2019 PM_2018 (0.4658); CropLoad_2018 (0.2837); Yield_2018 (0.0411); SR_29 DAF (0.0329); ShallowECa_2019 (0.0293) 

M4 – RFR 2020 CropLoad_2019 (0.3704); PM_2019 (0.2813); DeepECa_2020 (0.0734); ShallowECa_2020 (0.0483); Yield_2019 (0.0461) 

 2021 PM_2020 (0.6398); CropLoad_2020 (0.058); Yield_2020 (0.0415); DeepECa_2021 (0.0366); ShallowECa_2021 (0.0306) 

 


