Skip to main content
Log in

Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Flavonoids are plant phenolic compounds involved in leguminous plant-microbe interactions. Genes implied in the central branch (chalcone synthase (CHS), chalcone isomerase (CHI)) or in the isoflavonoid branch of the flavonoid biosynthesis pathway have been characterized in Medicago sativa. No information is available to date, however, on genes whose products are involved in the synthesis of other types of flavonoids. In this paper we present the genomic organization as well as the nucleotide sequence of one flavanone-3-hydroxylase (F3H) encoding gene of M. sativa, containing two introns and exhibiting 82–89% similarity at the amino acid level to other F3H proteins. This is the first report on the gennomic organization of a f3h gene so far. We present also the sequence of a partial dihydroflavonol-4-reductase (DFR) M. sativa cDNA clone. Southern blot experiments indicated that f3h and dfr genes are each represented by a single gene within the tetraploid genome of M. sativa. By a combination of Northern blot and RT-PCR analysis, we showed that both f3h and dfr genes are expressed in flowers, nodules and roots, with a pattern distinct from chs expression. Finally, we show that dfr is expressed in M. sativa leaves whereas f3h is not. The role played by these two genes in organs other than flowers remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allison LA, Kiss GB, Bauer P, Poiret M, Savouré A, Kondorsi E, Kondorosi A: Identification of two early nodulin genes with homology to members of the pea Enod12 family. Plant Mol Biol 21: 375–380 (1993).

    Google Scholar 

  2. Beld M, Martin C, Huits H, Stuitje AR, Gerats AGM: Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol 13: 491–502 (1989).

    Google Scholar 

  3. Breathnach R, Chambon P: Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383 (1981).

    Google Scholar 

  4. Britsch L, Grisebach H: Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur J Biochem 156: 569–577 (1986).

    Google Scholar 

  5. Britsch L, Ruhnau-Brich B, Forkmann G: Molecular cloning, sequence analysis, and in vitro expression of flavanone-3 β-hydroxylase from Petunia hybrida. J Biol Chem 267: 5380–5387 (1992).

    Google Scholar 

  6. Britsch L, Dedio J, Seadler H, Forkmann G: Molecular characterization of flavanone 3β-hydroxylases: consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217: 745–754 (1993).

    Google Scholar 

  7. Brown J: A catalogue of splice junction and putative branch point sequences from plant introns. Nucl Acids Res 14: 9549–9559 (1986).

    Google Scholar 

  8. Coronado C, Zuanazzi J, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi A, Ratet P: Medicago sativa root flavonoid production is nitrogen regulated. Plant Physiol 108: 533–542 (1994).

    Google Scholar 

  9. Dakora FD, Joseph CM, Phillips DA: Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101: 819–824 (1993).

    Google Scholar 

  10. Davis KM: A cDNA clone for flavanone-3-hydroxylase from Malus. Plant Physiol 103: 291 (1993).

    Google Scholar 

  11. Deak M, Kiss GB, Koncz C, Dudits D: Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5: 97–100 (1986).

    Google Scholar 

  12. Dellaporta S, Wood J, Hicks J: A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  13. Denarié J, Cullimore J: Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell 74: 951–954 (1993).

    Google Scholar 

  14. Denarié J, Roche P: Rhizobium nodulation signals. In: Verma D (eds) Molecular Singals in Plant-Microbe Communications, pp. 295–323. CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  15. Dixon RA, Choudhary A, Dalkin K, Edwards R, Fahrendorf T, Gowri G, Harrison M, Lamb C, Loake G, Maxwell C, Orr J, Paiva N: Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In: Stafford HA, Ibrahim RK (eds) Phenolic Metabolism in Plants, pp. 91–137. Plenum Press, New York (1992).

    Google Scholar 

  16. Esnault R, Buffard D, Breda C, Sallaud C, El Turk J, Kondorosi A: Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. pisi. Mol Plant-Microbe Interact 6: 655–664 (1993).

    Google Scholar 

  17. Fisher RF, Long SR: Rhizobium-plant signal exchange. Nature 357: 655–660 (1992).

    Google Scholar 

  18. Forkmann G, Stotz G: Genetic control of flavanone 3-hydroxylase activity and flavonoid 3′-hydroxylase activity in Anthirrinum majus (snapdragon). Z Naturforsch 36: 411–416 (1981).

    Google Scholar 

  19. Györgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D: Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16: 999–1007 (1991).

    Google Scholar 

  20. Hahlbrock K, Scheel D: Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369 (1989).

    Google Scholar 

  21. Harrison MJ, Dixon RA: Spatial patterns of expression of flavonoid.isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J: 9–20 (1994).

  22. Helariutta Y, Elomaa P, Kotilainen M, Seppänen P, Teeri TM: Cloning of cDNA coding for dihydroflavonol-4-reductase and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Mol Biol 22: 183–193 (1993).

    Google Scholar 

  23. Heller W, Forkmann G: Biosynthesis. In: Harborne J (eds) The Flavonoids, pp. 399–425. Chapman and Hall, London (1988).

    Google Scholar 

  24. Hirsch AM: Developmental biology of legume nodulation. New Phytol 122: 211–237 (1992).

    Google Scholar 

  25. Jackson D, Roberts K, Martin C: Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. Plant J 2: 425–434 (1992).

    Google Scholar 

  26. Junghans H, Dalkin K, Dixon RA: Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol Biol 22: 239–253 (1993).

    Google Scholar 

  27. Katagiri F, Chua NH: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Google Scholar 

  28. Kondorosi A: Regulation of nodulation genes in rhizobia. In: Verma DPS (ed) Molecular Signals in Plant-Microbe Communications, pp. 325–340. CRC press, Boca Raton, FL (1992).

    Google Scholar 

  29. Kristiansen KN, Rohde W: Structure of the Hordeum vulgare gene encoding dihydroflavonol-4-reductase and molecular analysis of ant18 mutants blocked in flavonoid synthesis. Mol Gen Genet 230: 49–59 (1991).

    Google Scholar 

  30. Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL: Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171–179 (1993).

    Google Scholar 

  31. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  32. Martin C, Carpenter R, Sommer H, Saedler H, Coen ES: Molecular analysis of instability in flower pigmentation of A. majus, following isolation of the pallida locus by transposition tagging. EMBO J 4: 1625–1630 (1985).

    Google Scholar 

  33. Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E: Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1: 37–49 (1991).

    Google Scholar 

  34. Matsuda J, Souichi O, Hashimoto T, Yamada Y: Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266: 9460–9464 (1991).

    Google Scholar 

  35. Maxwell CA, Harrison MJ, Dixon RA: Molecular characterization and expression of alfalfa isoliquiritigenin 2′-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J 4: 971–981 (1993).

    Google Scholar 

  36. Maxwell CA, Hartwig UA, Joseph CM, Phillips DA: A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91: 842–847 (1989).

    Google Scholar 

  37. McClure JW: Physiology and functions of flavonoids. In: JB Harborne, TJ Mabry (eds) The Flavonoids, pp. 990–1055. Academic Press, New York/San Francisco (1975).

    Google Scholar 

  38. McKhann HI, Hirsch AM: Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol Biol 24: 767–777 (1994).

    Google Scholar 

  39. Meldgaard M: Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor Appl Genet 83: 695–706 (1992).

    Google Scholar 

  40. Murphy L, Herzog C, Rudick J, Fojo A, Bates S: Use of the polymerase chain reaction in the quantitation of mdr-1 gene expression. Biochemistry 29: 10351–10356 (1990).

    Google Scholar 

  41. Nair M, Safir G, Sequeira J: Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57: 434–439 (1991).

    Google Scholar 

  42. O'Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H: Molecular cloning of the a1 locus of Z. mays using the transposable elements En and Mul. EMBO J 4: 877–882 (1985).

    Google Scholar 

  43. Paiva NL, Edwards R, Sun Y, Hrazdina G, Dixon RA: Stress responses in alfalfa (Medicago sativa L.). 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol Biol 17: 653–667 (1991).

    Google Scholar 

  44. Pay A, Heberle-Bors E, Hirt H: An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein. Plant Mol Biol 19: 501–503 (1992).

    Google Scholar 

  45. Peters N, Verma DPS: Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol Plant-Microbe Interact 3: 4–8 (1990).

    Google Scholar 

  46. Phillips D, Dakora F, Leon-Barrios M, Sande E, Joseph C: Signals released from alfalfa regulate microbial activities in the rhizophere. In: R Palacios JM, Newton WE (eds) New Horizons in Nitrogen Fixation, pp. 197–202. Kluwer Academic Publishers, Dordrecht (1993).

    Google Scholar 

  47. Pridmore R: New and versatile cloning vectors with kanamycin resistance marker. Gene 56: 309–312 (1987).

    Google Scholar 

  48. Rao AS: Root flavonoids. Bot Rev 56: 1–84 (1990).

    Google Scholar 

  49. Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M: A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13: 128–137 (1994).

    Google Scholar 

  50. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  51. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5477 (1977).

    Google Scholar 

  52. Spanu P, Reinhardt D, Boller T: analysis and cloning of ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J 10: 2007–2013 (1991).

    Google Scholar 

  53. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C: Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.) Plant Mol Biol 24: 743–755 (1994).

    Google Scholar 

  54. Styles ED, Ceska O: Pericarp flavonoids in genetic strains of Zea mays. Maydica 34: 227–237 (1989).

    Google Scholar 

  55. Volpin H, Elkind Y, Okon Y, Kapulnik Y: A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104: 683–689 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charrier, B., Coronado, C., Kondorosi, A. et al. Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol Biol 29, 773–786 (1995). https://doi.org/10.1007/BF00041167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041167

Navigation