Skip to main content
Log in

Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adam-Blondon A-F, Roux C, Claux D, Butterlin G, Merdinoglu D, This R (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Antcliff AJ (1980) Inheritance of sex in Vitis. Ann Amélior Plant 30:113–122

    Google Scholar 

  • Arroyo-Garcia R, Martinez-Zapater JM (2004) Development and characterization of new microsatellite markers for grape. Vitis 4:175–178

    Google Scholar 

  • Bernole A, Adam-Blandon A-F, Caboche M, Chalhoub B (2004) PCR-anchoring of 700 markers and ESTs on a BAC library. Plant Animal and Microbe Genome Conference XII, San Diego, 10–14 January 2004

  • Bishop DT, Cannings C, Skolnick M, Williamson JA (1983) The number of polymorphic DNA clones required to map the human genome. In: Weir BS (ed) Statistical analysis of DNA sequence data. Marcel-Dekker, New York, pp 181–200

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    CAS  PubMed  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246

    CAS  Google Scholar 

  • Chao S, Baysdorfer C, Heredia- Diaz O, Musket T, Xu G, Coe EH (1994) RFLP mapping of partially sequenced leaf cDNA clones in maize. Theor Appl Genet 88:717–721

    Article  CAS  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Dalbó MA, Ye GN, Weeden NG, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular-based genetic map. Genome 43:333–340

    Article  PubMed  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 106:163–172

    Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 106:1213–1224

    Google Scholar 

  • Doligez A, A-F, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five different populations. Theor Appl Genet. DOI 10.1007/s00122–006–0295–1

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for phenotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  PubMed  CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  PubMed  CAS  Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 137:1121–1137

    Google Scholar 

  • Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ati). Theor Appl Genet 88:289–292

    Google Scholar 

  • Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106:1213–1224

    PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Krivanek AF, Walker MA (2005) Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 95:44–52

    CAS  PubMed  Google Scholar 

  • Krivanek AF, Stevenson JF, Walker MA (2005) Development and comparison of symptom indices for quantifying grapevine resistance to Pierce’s disease. Phytopathology 95:36–43

    CAS  PubMed  Google Scholar 

  • Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomua A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300-kilobases-interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Ky C-L, Barre P, Lorieux M, Thouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.) Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Lodhi MA, Reisch BI, Weeden NF (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanuad C, Gonzalez de Leon D (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89

    Google Scholar 

  • Lowe KM, Walker MA (2006) Genetic map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Meyer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Stewart G, Wolf-Rüdiger S (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805

    Article  PubMed  CAS  Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, A-F, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Nelson CD, Kubisiak TL, Stine M, Nance WL 1994. A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNA. J Hered 85:433–439

    CAS  Google Scholar 

  • Ottaviano E, Sari-Gorla M, Pe E (1982) Male gametophytic selection in maize. Theor Appl Genet 63:249–254

    Article  Google Scholar 

  • Paterson A, Lander E, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using the complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Pauquet J, Bouquet A, This P, AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210

    Article  CAS  Google Scholar 

  • Plomion C, O’Malley DM, Durel CE (1995) Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seed of the same individual. Theor Appl Genet 90:1028–1034

    Article  CAS  Google Scholar 

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–887

    Article  PubMed  CAS  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Glossl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    Article  PubMed  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stam P, Van Ooijen JW (1995) JoinMap™ version 3.0: Software for the calculation of genetic linkage maps, Wageningen

  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990

    CAS  Google Scholar 

  • Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: A universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949

    Article  PubMed  CAS  Google Scholar 

  • Van Oojen JW, Voorips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Voorips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrlees ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research funding from the California Department of Food and Agriculture’s Pierce’s Disease Board, the California Grape Rootstock Improvement Commission and the Louis P. Martini Endowed Chair funds is gratefully acknowledged. The authors are also grateful to Eileen Sweeney, Rong Hu, Rita Zhou, Jasmine Roberts, Juliana Chow, Nick Roncoroni, and Dan Ng for their various roles in facilitating this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Walker.

Additional information

Communicated by M. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riaz, S., Krivanek, A.F., Xu, K. et al. Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica . Theor Appl Genet 113, 1317–1329 (2006). https://doi.org/10.1007/s00122-006-0385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0385-0

Keywords

Navigation