Skip to main content
Log in

SPME followed by GC–MS: a powerful technique for qualitative analysis of honey volatiles

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Volatile compounds from 40 honey samples of different botanic origin were analyzed by SPME followed by GC–MS. In order to obtain complementary data for an overall characterization of honey aroma, two different SPME fiber coatings (polyacrylate and carboxen/polydimethylsiloxane) were employed. The use of both fibers with a single chromatographic column afforded the identification or characterization, based on GC retention and mass spectral data, of a total of 193 volatile components. A total of 166 honey volatiles were characterized (146 identified) from CAR/PDMS data, this fiber being the most appropriate for isolation of low molecular weight compounds. Polyacrylate fiber was better for extraction of polar semivolatiles, allowing to identify 120 compounds and to characterize 132. Besides typical nectar components such as limonene, linalool, etc., different compounds from fermentation (ethanol and 2,3-butanediol), processing (furan derivatives), hive treatment (thymol), etc. were detected. Although many volatiles were common to most honey samples analyzed, other seemed to be characteristic of certain honey types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bicchi C, Belliardo F, Frattini C (1983) J Apic Res 22:130–136

    CAS  Google Scholar 

  2. Rowland CY, Blackman AJ, D’Arcy BR, Rintoul GB (1995) J Agric Food Chem 43:753–763

    Article  CAS  Google Scholar 

  3. D’Arcy BR, Rintoul GB, Rowland CY, Blackman AJ (1997) J Agric Food Chem 45:1834–1843

    Article  CAS  Google Scholar 

  4. Tan ST, Holland PT, Wilkins AL, Molan PC (1988) J Agric Food Chem 36:453–460

    Article  CAS  Google Scholar 

  5. Bonaga G, Giumanini AG (1986) J Apic Res 25:113–120

    CAS  Google Scholar 

  6. Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2004) J Sci Food Agric 85:91–97

    Article  Google Scholar 

  7. Bouseta A, Collin S (1995) J Agric Food Chem 43:1890–1897

    Article  CAS  Google Scholar 

  8. Bouseta A, Collin S, Dufour JP (1992) J Apic Res 31:96–109

    CAS  Google Scholar 

  9. Overton SV, Manura JJ (1994) Am Lab 26:45, 47–53

    Google Scholar 

  10. Radovic BS, Careri M, Mangia A, Musci M, Gerboles M, Anklam E (2001) Food Chem 72:511–520

    Article  CAS  Google Scholar 

  11. Soria AC, Martínez-Castro I, Sanz J (2007) J Chromatogr A 1157:430–436

    Article  CAS  Google Scholar 

  12. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  13. Pillonel L, Bosset JO, Tabacchi R (2002) Lebensm-Wiss u-Technol 35:1–14

    Article  CAS  Google Scholar 

  14. Guidotti M, Vitali M (1998) Ind Aliment 37:351–353, 356

    Google Scholar 

  15. Verzera A, Campisi S, Zappalà M, Bonaccorsi I (2001) Am Lab News 7:18–21

    Google Scholar 

  16. Pérez RA, Sánchez-Brunete C, Calvo RM, Tadeo JL (2002) J Agric Food Chem 50:2633–2637

    Article  Google Scholar 

  17. Soria AC, Martínez-Castro I, Sanz J (2003) J Sep Sci 26:793–801

    Article  CAS  Google Scholar 

  18. Piasenzotto L, Gracco L, Conte L (2003) J Sci Food Agric 83:1037–1044

    Article  CAS  Google Scholar 

  19. Bentivenga G, D’Auria M, Fedeli P, Mauriello G, Racioppi R (2004) Int J Food Sci Technol 39:1079–1086

    Article  CAS  Google Scholar 

  20. Soria AC, González M, de Lorenzo C, Martínez-Castro I, Sanz J (2004) Food Chem 85:121–130

    Article  CAS  Google Scholar 

  21. Ampuero S, Bogdanov S, Bosset J (2004) Eur Food Res Technol 218:198–207

    Article  CAS  Google Scholar 

  22. Soria AC, González M, de Lorenzo C, Martínez-Castro I, Sanz J (2005) J Sci Food Agric 85:817–824

    Article  CAS  Google Scholar 

  23. Alissandrakis E, Kibaris AC, Tarantilis PA, Harizanis PC, Polissiou M (2005) J Sci Food Agric 85:1444–1452

    Article  CAS  Google Scholar 

  24. de la Fuente E, Martínez-Castro I, Sanz J (2005) J Sep Sci 28:1093–1100

    Article  Google Scholar 

  25. Baroni MV, Nores ML, Díaz MP, Chiabrando GA, Fassano JP, Costa C, Wunderlin DA (2006) J Agric Food Chem 54:7235–7241

    Article  CAS  Google Scholar 

  26. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E (2007) Food Chem 103:1032–1043

    Article  CAS  Google Scholar 

  27. Odeh I, Abu-Lafi S, Dewik H, Al-Najjar I, Imam A, Dembitsky VM, Hanus LO (2007) Food Chem 101:1393–1397

    Article  CAS  Google Scholar 

  28. Mannas D, Altug T (2007) Int J Food Sci Technol 42:133–138

    Article  CAS  Google Scholar 

  29. Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2007) Food Chem 100:396–404

    Article  CAS  Google Scholar 

  30. McLafferty FW, Stauffe DB (1989) The Wiley/NBS registry of mass spectral data. Wiley, New York

    Google Scholar 

  31. Soria AC, Martínez-Castro I, de Lorenzo C, Sanz J (2008) Food Chem 107:439–443

    Article  CAS  Google Scholar 

  32. de la Fuente E, Valencia-Barrera RM, Martínez-Castro I, Sanz J (2007) Food Chem 103:1176–1180

    Article  Google Scholar 

  33. McReynolds WO (1966) Gas chromatographic retention data. Preston Technical Abstracts Company, Evanston

    Google Scholar 

  34. Bianchi F, Careri M, Mangia A, Musci M (2007) J Sep Sci 30:563–572

    Article  CAS  Google Scholar 

  35. http://www.pherobase.com/database/floral-compounds/floral-taxa-compounds-index.php

  36. Shimoda M, Wu Y, Osajima Y (1996) J Agric Food Chem 44:3913–3918

    Article  CAS  Google Scholar 

  37. Jennings W, Shibamoto T (1980) Qualitative analysis of flavor and fragrante volatiles by glass capillary gas chromatography. Academic Press, New York

    Google Scholar 

  38. Bianchi F, Careri M, Musci M (2005) Food Chem 89:527–532

    Article  CAS  Google Scholar 

  39. Davies NW (1990) J Chromatogr A 503:1–24

    Article  CAS  Google Scholar 

  40. Guyot C, Scheirman V, Collin S (1999) Food Chem 64:3–11

    Article  CAS  Google Scholar 

  41. Castro-Vázquez L, Pérez-Coello MS, Cabezudo MD (2003) Chromatographia 57:227–233

    Article  Google Scholar 

  42. Cajka T, Hajslová J, Cochran J, Holadová K, Klimánková E (2007) J Sep Sci 30:534–546

    Article  CAS  Google Scholar 

  43. Njoroge SM, Koaze H, Mwaniki M, Tu NTM, Sawamura M (2005) Flavour Fragr J 20:74–79

    Article  CAS  Google Scholar 

  44. Bouseta A, Scheirman V, Collin S (1996) J Food Sci 61:683–687

    Article  CAS  Google Scholar 

  45. Guyot-Declerck C, Renson S, Bouseta A, Collin S (2002) Food Chem 79:453–459

    Article  CAS  Google Scholar 

  46. Campos G, Nappi GU, Raslan DS, Augusti R (2000) Cienc Technol Aliment 20:18–22

    CAS  Google Scholar 

  47. de la Fuente E, Sanz ML, Martínez-Castro I, Sanz J, Ruiz-Matute AI (2007) Food Chem 105:84–93

    Article  Google Scholar 

  48. Tan ST, Wilkins AL, Holland PT, McGhie TK (1989) J Agric Food Chem 37:1217–1221

    Article  CAS  Google Scholar 

  49. Graddon AD, Morrison JD, Smith JF (1979) J Agric Food Chem 27:832–837

    Article  CAS  Google Scholar 

  50. Tsuneya T, Shibai T, Yoshioka A, Shiga M (1974) Koryo 109:29–35

    CAS  Google Scholar 

  51. Blank I, Fischer KH, Grosch W (1989) Z Lebensm Unters Forsch 189:426–433

    Article  CAS  Google Scholar 

  52. Guyot C, Bouseta A, Scheirman V, Collin S (1998) J Agric Food Chem 46:625–633

    Article  CAS  Google Scholar 

  53. Häusler M, Montag A (1990) Dtsch Lebensm-Rundsch 86:171–174

    Google Scholar 

  54. Ferber CEM, Nursten HE (1977) J Sci Food Agric 28:511–518

    Article  CAS  Google Scholar 

  55. Viñas P, Soler-Romera MJ, Hernández-Córdoba M (2006) Talanta 69:1063–1067

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by projects CTQ2006-14993/BQU and ANALISYC-S-505/AGR-0312 supported by CYCIT and Comunidad de Madrid, respectively. A.C.S. also thanks CSIC and the EU for a postdoctoral I3P contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Soria.

Electronic supplementary material

Volatile compounds fractionated by SPME and identified or characterized by GC–MS in each of the honey samples under study appear listed in table 2 (for PA fiber) and table 3 (for CAR/PDMS), grouped by their honey type (rosemary, eucalyptus, citrus, thyme, acacia, rhododendron, chestnut, dandelion, lavender, heather, Teide broom, multiflower and honeydew). The characteristic presence of a volatile compound in a single source was indicated in these tables according to the following criterion: “xx” for a clear presence in most of the analyzed honey samples from the same source and “x” for compounds detected in trace amounts and/or only present in a few samples of that source. “x” was also used for volatiles detected in honey sources for which only one sample was available. This material is available free of charge via the Internet in the online version of this paper only.

217_2008_966_MOESM1_ESM.doc

Supplementary Table 2. Volatile compounds fractionated by SPME using a CAR/PDMS fiber coating in honeys from different source (DOC 504 kb)

217_2008_966_MOESM2_ESM.doc

Supplementary Table 3. Volatile compounds fractionated by SPME using a PA fiber coating in honeys from different source (DOC 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soria, A.C., Sanz, J. & Martínez-Castro, I. SPME followed by GC–MS: a powerful technique for qualitative analysis of honey volatiles. Eur Food Res Technol 228, 579–590 (2009). https://doi.org/10.1007/s00217-008-0966-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0966-z

Keywords

Navigation