Skip to main content
Log in

An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alcoholic fermentation of grape must is a complex process, involving several yeast genera and species. The early stages in fermentation are dominated by non-Saccharomyces yeasts that are gradually replaced by the Saccharomyces cerevisiae species, which takes over the fermentation. Quantitative studies have reported the influence of non-Saccharomyces yeast species on wine quality and evaluated their biotechnological interest. The industrial yeast market, which, until recently, exclusively focused on S. cerevisiae, now offers S. cerevisiae/non-Saccharomyces (including Torulaspora delbrueckii) multi-starters. The development of these new mixed industrial starters requires a better understanding of the interaction mechanisms between yeast populations in order to optimize the aromatic impact of the non-Saccharomyces yeast while ensuring complete alcoholic fermentation thanks to S. cerevisiae. For this purpose, a new double-compartment fermentor was designed with the following characteristics: (1) physical separation of two yeast populations, (2) homogeneity of the culture medium in both compartments, (3) fermentation kinetics monitored by weight loss due to CO2 release, and (4) independent monitoring of growth kinetics in the two compartments. This tool was used to compare mixed inoculations of S. cerevisiae/T. delbrueckii with and without physical separation. Our results revealed that physical contact/proximity between S. cerevisiae and T. delbrueckii induced rapid death of T. delbrueckii, a phenomenon previously described and attributed to a cell–cell contact mechanism. In contrast, when physically separated from S. cerevisiae, T. delbrueckii maintained its viability and its metabolic activity had a marked impact on S. cerevisiae growth and viability. The double fermentor is thus a powerful tool for studying yeast interactions. Our findings shed new light on interaction mechanisms described in microorganism populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertin W, Marullo P, Aigle M, Dillmann C, de Vienne D, Bely M, Sicard D (2011) Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control. Appl Environ Microbiol 77(8):2772–2784

    Article  CAS  Google Scholar 

  • Andorra I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamon JM (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. Food Sci Technol 49:8–13

    Google Scholar 

  • Arneborg N, Siegumfeldt H, Andersen GH, Nissen P, Daria VR, Rodrigo PJ, Gluckstad J (2005) Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiol Lett 245:155–159

    Article  CAS  Google Scholar 

  • Baleiras Couto MM, Reizinho RG, Duarte FL (2005) Partial 26S rDNA restriction analysis as a tool to characterise non-Saccharomyces yeasts present during red wine fermentations. Int J Food Microbiol 102:49–56

    Article  CAS  Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990a) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 70:246–252

    Article  CAS  Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990b) Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic 41:319–324

    CAS  Google Scholar 

  • Bely M, Stoeckle P, Masneuf-Pomarede I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320

    Article  CAS  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    CAS  Google Scholar 

  • Cabrera MJ, Moreno J, Ortega JM, Medina M (1988) Formation of ethanol, higher alcohols, esters, and terpenes by five yeast strains in musts from Pedro Ximenez grapes in various degrees of ripeness. Am J Enol Vitic 39:283–287

    CAS  Google Scholar 

  • Capece A, Pietrafesa R, Romano P (2011) Experimental approach for target selection of wild wine yeasts from spontaneous fermentation of “Inzolia” grapes. World J Microbiol Biotechnol 27:2775–2783

    Article  CAS  Google Scholar 

  • Cheraiti N, Guezenec S, Salmon JM (2005) Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Appl Environ Microbiol 71:255–260

    Article  CAS  Google Scholar 

  • Cheraiti N, Sauvage FX, Salmon JM (2008) Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77:1093–1109

    Article  CAS  Google Scholar 

  • Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203

    Article  CAS  Google Scholar 

  • Ciani M, Picciotti G (1995) The growth-kinetics and fermentation behavior of some non-Saccharomyces yeasts associated with wine-making. Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  • Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245

    Article  CAS  Google Scholar 

  • Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    Article  CAS  Google Scholar 

  • Cocolin L, Mills DA (2003) Wine yeast inhibition by sulfur dioxide: a comparison of culture-dependent and independent methods. Am J Enol Vitic 54:125–130

    CAS  Google Scholar 

  • Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882

    Article  CAS  Google Scholar 

  • Di Maro E, Ercolini D, Coppola S (2007) Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int J Food Microbiol 117:201–210

    Article  Google Scholar 

  • Domizio P, Lencioni L, Ciani M, Di Blasi S, Pontremolesi C, Sabatelli MP (2007) Spontaneous and inoculated yeast populations dynamics and their effect on organoleptic characters of Vinsanto wine under different process conditions. Int J Food Microbiol 115:281–289

    Article  CAS  Google Scholar 

  • Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180

    Article  CAS  Google Scholar 

  • Dukes BC, Butzke CE (1998) Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-l-cysteine spectrophotometric assay. Am J Enol Vitic 49:125–134

    CAS  Google Scholar 

  • Edwards CG, Beelman RB, Bartley CE, McConnell AL (1990) Production of decanoic acid and other volatile compounds and the growth of yeast and malolactic bacteria during vinification. Am J Enol Vitic 41:48–56

    CAS  Google Scholar 

  • Eschenbruch R (1974) Sulfite and sulfide formation during winemaking—a review. Am J Enol Vitic 25:157–161

    CAS  Google Scholar 

  • Fernandez MT, Ubeda JF, Briones AI (1999) Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol Lett 173:223–229

    CAS  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  CAS  Google Scholar 

  • Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  Google Scholar 

  • Fleet GH, Lafon-Lafourcade S, Ribereau-Gayon P (1984) Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48:1034–1038

    CAS  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  CAS  Google Scholar 

  • Ganga MA, Martinez C (2004) Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts. J Appl Microbiol 96:76–83

    Article  CAS  Google Scholar 

  • Gonzalez SS, Barrio E, Querol A (2007) Molecular identification and characterization of wine yeasts isolated from Tenerife (Canary Island, Spain). J Appl Microbiol 102:1018–1025

    CAS  Google Scholar 

  • Hanl L, Sommer P, Arneborg N (2005) The effect of decreasing oxygen feed rates on growth and metabolism of Torulaspora delbrueckii. Appl Microbiol Biotechnol 67:113–118

    Article  CAS  Google Scholar 

  • Heard GM, Fleet GH (1985) Growth of natural yeast flora during the fermentation of inoculated wines. Appl Environ Microbiol 50:727–728

    CAS  Google Scholar 

  • Heard GM, Fleet GH (1986) Occurrence and growth of yeast species during the fermentation of some Australian wines. Food Technol Aust 38:22–25

    Google Scholar 

  • Hernandez-Orte P, Cersosimo M, Loscos N, Cacho J, Garcia-Moruno E, Ferreira V (2008) The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem 107:1064–1077

    Article  CAS  Google Scholar 

  • Herraiz T, Reglero G, Herraiz M, Martin-Alvarez PJ, Cabezudo MD (1990) The influence of the yeast and type of culture on the volatile composition of wines fermented without sulphur dioxide. Am J Enol Vitic 41:313–318

    CAS  Google Scholar 

  • Hierro N, Gonzalez A, Mas A, Guillamon JM (2006) Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration. FEMS Yeast Res 6:102–111

    Article  CAS  Google Scholar 

  • Jolly NP, Augustyn OPH, Pretorius IS (2003) The effect of non-Saccharomyces yeasts on fermentation and wine quality. S Afr J Enol Vitic 24:55–62

    CAS  Google Scholar 

  • King A, Dickinson JR (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16:499–506

    Article  CAS  Google Scholar 

  • Kleerebezem M, Quadri LEN, Kuipers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  Google Scholar 

  • Ludovico P, Sansonetty F, Corte-Real M (2001) Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147:3335–3343

    CAS  Google Scholar 

  • Martinez J, Toledano F, Millan C, Ortega JM (1990) Development of alcoholic fermentation in non-sterile musts from Pedro Ximenez grapes inoculated with pure cultures of selected yeasts. Food Microbiol 7:217–225

    Article  CAS  Google Scholar 

  • Marullo P, Bely M, Masneuf-Pomarède I, Pons M, Aigle M, Dubourdieu D (2006) Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res 6:268–279

    Article  CAS  Google Scholar 

  • Medina K, Boido E, Dellacassa E, Carrau F (2012) Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int J Food Microbiol 157:245–250

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in Botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893

    Article  CAS  Google Scholar 

  • Moreira N, Pina C, Mendes F, Couto JA, Hogg T, Vasconcelos I (2011) Volatile compounds contribution of Hanseniaspora guilliermondii and Hanseniaspora uvarum during red wine vinifications. Food Control 22:662–667

    Article  CAS  Google Scholar 

  • Nisiotou AA, Nychas GJE (2007) Yeast populations residing on healthy or Botrytis-infected grapes from a vineyard in Attica, Greece. Appl Environ Microbiol 73:2765–2768

    Article  CAS  Google Scholar 

  • Nissen P, Arneborg N (2003) Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Arch Microbiol 180:257–263

    Article  CAS  Google Scholar 

  • Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell–cell contact-mediated mechanism. Yeast 20:331–341

    Article  CAS  Google Scholar 

  • Nissen P, Nielsen D, Arneborg N (2004) The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures. Appl Microbiol Biotechnol 64:543–550

    Article  CAS  Google Scholar 

  • Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536

    Article  CAS  Google Scholar 

  • Plata C, Millan C, Mauricio JC, Ortega JM (2003) Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol 20:217–224

    Article  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Renault P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A, Bely M (2009) Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry. Int J Food Microbiol 134:201–210

    Article  CAS  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  Google Scholar 

  • Richard P, Bakker BM, Teusink B, van Dam K, Westerhoff HV (1996) Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem 235:238–241

    Article  CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  Google Scholar 

  • Roustan JL, Sablayrolles JM (2002a) Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J Biosci Bioeng 93:367–375

    CAS  Google Scholar 

  • Roustan JL, Sablayrolles JM (2002b) Impact of the addition of electron acceptors on the by-products of alcoholic fermentation. Enzyme Microb Technol 31:142–152

    Article  CAS  Google Scholar 

  • Shinohara T, Kubodera S, Yanagida F (2000) Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J Biosci Bioeng 90:90–97

    CAS  Google Scholar 

  • Slaughter JC, Nomura T (1992) Intracellular glycogen and trehalose contents as predictors of yeast viability. Enzyme Microb Technol 14:64–67

    Article  CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J GrapeWine R 11:139–173

    Article  CAS  Google Scholar 

  • Tofalo R, Schirone M, Torriani S, Rantsiou K, Cocolin L, Perpetuini G, Suzzi G (2012) Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiol 29:18–26

    Google Scholar 

  • Weeks C (1969) Production of sulfur dioxide-binding compounds and of sulfur dioxide by two Saccharomyces Yeasts. Am J Enol Vitic 20:32–39

    CAS  Google Scholar 

  • Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int J Food Microbiol 125:197–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Martine Mietton-Peuchot, Rémy Ghidossi and Christian Poupot from “Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Equipe Chimie, Biochimie, Procédés du raisin et du vin (F-33140 Villenave d’Ornon, France)” for their precious help in double-compartment fermentor design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renault, P.E., Albertin, W. & Bely, M. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Appl Microbiol Biotechnol 97, 4105–4119 (2013). https://doi.org/10.1007/s00253-012-4660-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4660-5

Keywords

Navigation