Skip to main content
Log in

Vacuolar citrate/H+ symporter of citrus juice cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We have isolated a cDNA, designated Citrus sinensis citrate transporter 1 CsCit1 encoding a novel vacuolar citrate/symporter. Immunoblots using antibodies raised against CsCit1 showed that the protein is localized to the juice sac cell vacuoles. The highest expression of CsCit1 and the amount of protein in the juice sac cell vacuoles coincided with the developmental stage at which the vacuolar citrate content began declining with the concomitant increase in vacuolar pH. Vacuoles from Sacharomyces cereviseae expressing CsCit1 displayed a citrate-dependent H+ efflux, and our results clearly demonstrate that CsCit1 is able to mediate the electroneutral co-transport of H+ and citrate ions, since the citrate-dependent H+ fluxes are not affected by changing the electrical potential difference across the tonoplast. The roles of CsCit1 in mediating citrate efflux from the vacuole and on citric acid homoestasis in Citrus juice sac cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of beta-vulgaris. Plant Physiol 78:163–167

    PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1987) Salt tolerance in suspension-cultures of sugar-beet-induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant Physiol 83:884–887

    PubMed  CAS  Google Scholar 

  • Blumwald E, Rea PA, Poole RJ (1987) Preparation of tonoplast vesicles—applications to H+-coupled secondary transport in plant vacuoles. Methods Enzymol 148:115–123

    Article  CAS  Google Scholar 

  • Brune A, Gonzales P, Goren R, Zehavi U, Echeverria E (1998) Citrate uptake into tonoplast vesicles from acid lime (citrus aurantifolia) juice cells. J Membr Biol 166:197–203

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Muller M., Taiz L., Gonzalez P., Echeverria E. (2002) Vacuolar acidification in citrus fruit: comparison between acid lime (Citurs aurantifolia) and sweet lime (Citurs limmetoides) juice cells. J Am Soc Hort Sci 127:171–177

    CAS  Google Scholar 

  • Canel C, Bailey-Serres JN, Roose ML (1995) In vitro [14C]citrate uptake by tonoplast vesicles of acidless citrus juice cells. J Am Soc Hort Sci 120:510–514

    CAS  Google Scholar 

  • Canel C, Bailey-Serres JN, Roose ML (1996) Molecular characteriztion of the mitochondrial citrate synthase gene of an acidless pummelo. Plant Mol Biol 31:143–147

    Article  PubMed  CAS  Google Scholar 

  • Cerana R, Giromini L, Colombo R (1995) Malate-regulated channels permeable to anions in vacuoles of Arabidopsis thaliana. J Plant Physiol 22:115–121

    CAS  Google Scholar 

  • Echeverria E, Burns JK (1989) Vacuolar acid hydrolysis as a physiological mechanism for sucrose breakdown. Plant Physiol 90:530–533

    PubMed  CAS  Google Scholar 

  • Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Nat Acad Sci USA 100:11122–11126

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Hafke Y, Smith JAC, Luttge U, Thiel G (2003) Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Plant J 35:116–128

    Article  PubMed  CAS  Google Scholar 

  • Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–10

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma Y, Ohsumi Y, Anraku Y (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccaromyces cereviseae. J Biol Chem 256:10859–10863

    PubMed  CAS  Google Scholar 

  • Miyake S, Yamashita T, Taniguchi M, Tamatani M, Sato K, Tohyama M (2002) Identification and characterization of a novel mitochondrial tricarboxylate carrier. Biochem Biophys Res Commun 295:463–468

    Article  PubMed  CAS  Google Scholar 

  • Muller ML, IrkensKiesecker U, Kramer D, Taiz L (1997) Purification and reconstitution of the vacuolar H+-ATPases from lemon fruits and epicotyls. J Biol Chem 272:12762–12770

    Article  PubMed  CAS  Google Scholar 

  • Muller ML, Taiz L (2002) Regulation of the lemmon-fruit V-ATPase by variable stoichiometry and organic acids. J Membr Biol 185:2009–220

    Google Scholar 

  • Ohsumi Y, Anraku Y (1981) Active-transport of basic-amino-acids driven by a proton motive force in vacuolar membrane-vesicles of Saccharomyces Cerevisiae. J Biol Chem 256:2079–2082

    PubMed  CAS  Google Scholar 

  • Oleski N, Mahdavi P, Bennett AB (1987) Transport properties of the tomato fruit tonoplast. II. Citrate transport. Plant Physiol 84:997–1000

    PubMed  CAS  Google Scholar 

  • Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol Renal Physiol 39:F642–F648

    Google Scholar 

  • Pantoja O, Gelli A, Blumwald E (1992) Characterization of vacuolar malate and K+ channels under physiological conditions. Plant Physiol 100:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Pantoja O, Smith JAC (2002) Sensibility of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers. J Membr Biol 186: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Pei Z-M, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564–6574

    PubMed  CAS  Google Scholar 

  • Ramakrishnan CV (1971) Citric acid metabolism in the fruit tissues of Citrus acida. Curr Sci 21:97–100

    Google Scholar 

  • Ratajczak R, Luttge U, Gonzalez P, Etxeberria E (2003) Malate and malate-channel antibodies inhibit electrogenic and ATP-dependent citrate transport across the tonoplast of citrus juice cells. J Plant Physiol 160:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Martinoia E (1991) Citrate transport into barley mesophyll vacuoles—comparison with malate-uptake activity. Planta 184:532–537

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch ER, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, vol 1, 2, 3

  • Ting SV, Vines HM (1966) Organic acids in the juice vesicles of Florida “Hamlin” orange and “Marsh Seedles” grapefruit. J Am Soc Hort Sci 88:291–297

    CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality Rna from cotton (Gossypium-Hirsutum L). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Smith JAC (1989) Proton and anion transport at the tonoplast in Crassulacean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoe daigremontiana. Planta 179:265–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhang Hui for assistance in the initial experiments. This work was supported by grant No. 5000-117 from the California Citrus Research Board, by a Research Grant No. US-3575-04R from BARD, the United States-Israel Binational Agricultural Research and Development Fund, and by the Will W. Lester Endowment, University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Blumwald.

Additional information

T. Shimada and R. Nakano contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, T., Nakano, R., Shulaev, V. et al. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224, 472–480 (2006). https://doi.org/10.1007/s00425-006-0223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0223-2

Keywords

Navigation