Skip to main content
Log in

Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Traits such as berry weight, firmness, and sweetness are important determinants of consumer choice and marketability of table grapes. Quantitative trait locus (QTL) analyses of berry traits have been conducted and markers have been developed mainly in Vitis vinifera. Interspecific hybrid grape (Vitis labruscana × V. vinifera) is particularly valuable in wet climates, but no QTL analyses of its berry traits have been reported. Using 98 F1 individuals from a V. labruscana × V. vinifera cross, we performed QTL analysis of eight berry traits. We identified eight related QTLs—two for berry cracking, one for berry weight, two for firmness, one for harvest date, one for soluble solids concentration, and one for titratable acidity. Among them, the QTL for berry weight on linkage group (LG) 11 had the strongest and most stable effect over 4 years. This QTL might provide a reliable marker, as variations in berry weight are due mainly to genotype effects. The alleles for increasing berry weight and for increasing berry cracking were linked on LG 11. These results will contribute to marker-assisted selection in table grape breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Alleweldt G, Spiegel-Roy P, Reisch B (1990) Grapes (Vitis). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nuts crops. International Society for Horticultural Science, Madison, pp 291–327

    Google Scholar 

  • Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114

    Article  CAS  Google Scholar 

  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-D: -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653–669

    Article  CAS  PubMed  Google Scholar 

  • Bayo-Canha A, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186:393–407

    Article  CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press LLC, New York, pp 145–162

    Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585

    Article  CAS  PubMed  Google Scholar 

  • Campbell RC (1974) Statistics for biologists, 2nd edn. Baifukan, Tokyo

    Google Scholar 

  • Carreño I, Cabezas JA, Martínez-Mora C, Arroyo-García R, Cenis JL, Martínez-Zapater JM, Carreño J, Ruiz-García L (2015) Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.). Tree Genet Genomes 11:1–10

    Article  Google Scholar 

  • Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coombe BG (1988) Grapevine phenology. In: Coombe BG, Dry P (eds) Viticulture, vol 1. Winetitles, Adelaide, pp 139–153

    Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    Article  PubMed  Google Scholar 

  • Demir KOK (2014) A review on grape growing in Tropical regions. Turk J Agric Nat Sci 1:1236–1241

    Google Scholar 

  • Dokoozlian NK (2000) Grape berry growth and development. Raisin production manual. University of California, Agricultural and Natural Resources Publication, Oakland, pp 30–37

    Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    Article  CAS  PubMed  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavour and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125

    Article  CAS  Google Scholar 

  • Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, François P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Péros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLS and candidate genes for developmental stages. Theor Appl Genet 124:623–635

    Article  PubMed  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664

    Article  CAS  PubMed  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J (2003) Auxin transport—Shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Horiuchi H, Takato H, Kohno M, Suzuki S (2012) Auxin-responsive grape Aux/IAA9 regulates transgenic Arabidopsis plant growth. Mol Biol Rep 39:7823–7829

    Article  CAS  PubMed  Google Scholar 

  • Harker FR, Stec MGH, Hallett IC, Bennett CL (1997) Texture of parenchymatous plant tissue: a comparison between tensile and other instrumental and sensory measurements of tissue strength and juiciness. Postharvest Biol Technol 11:63–72

    Article  Google Scholar 

  • Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002) Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biol Technol 24:225–239

    Article  Google Scholar 

  • Hedrick UP (1908) The grapes of New York. Albany J B Company, State Printers, New York

    Google Scholar 

  • Hedrick UP (1925) Systematic pomology. Macmillan, New York

    Book  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Karaagac E, Vargas A, De Andrés MT, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015

    Article  Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Zapater JM, Carmona MJ, Díaz-Riquelme J, Fernández L, Lijavetzky D (2009) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46

    Article  Google Scholar 

  • McCouch SR, Tanksley SD (1991) Development and use of restriction fragment length polymorphism in rice breeding and genetics. In: Toenniessen G, Khush G (eds) Rice Biotechnology. CAB International, Tucson, pp 109–133

    Google Scholar 

  • Mejía N, Gebauer M, Muñoz L, Hewstone N, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507

    Google Scholar 

  • Morinaga K (2001) Grape production in Japan. In: Papademetriou MK, Dent FJ (eds) Grape production in the Asia-Pacific region. FAO, Bangkok, pp 38–52

    Google Scholar 

  • Nishio S, Yamada M, Sawamura Y, Takada N, Saito T (2011) Environmental variance components of fruit ripening date as used in both phenotypic and marker-assisted selection in Japanese pear breeding. HortScience 46:1540–1544

    Google Scholar 

  • Nishio S, Yamada M, Takada N, Kato H, Onoue N, Sawamura Y, Saito T (2014) Environmental variance and broad-sense heritability of nut traits in Japanese chestnut breeding. HortScience 49:696–700

    Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3–900051–07–0, http://www.R-project.org/

  • Reisch BI, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding. Wiley, New York, pp 297–369

    Google Scholar 

  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Sakia RM (1992) The Box–Cox transformation technique: a review. Statistician 41:169–178

    Article  Google Scholar 

  • Sato A, Yamada M, Iwanami H, Hirakawa N (2000) Optimal spatial and temporal measurement repetition for reducing environmental variation of berry traits in grape breeding. Sci Hort 85:75–83

    Article  Google Scholar 

  • Snyder E (1937) Grape development and improvement. Yearbook of agriculture 1937. USDA, Washington, DC, pp 631–664

    Google Scholar 

  • Ukai Y (2000) Genetic analysis at the genomic level: Map and QTL. University of Tokyo Press, Tokyo

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V. Wageningen, Netherlands

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Soloviev V, Fawcett JA, Sterck L, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12:951–964

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California press, Oakland

    Google Scholar 

  • Xin H, Zhang J, Zhu W, Wang N, Fang P, Han Y, Ming R, Li S (2013) The effects of artificial selection on sugar metabolism and transporter genes in grape. Tree Genet Genomes 9:1343–1349

    Article  Google Scholar 

  • Yamada M, Yamane H, Yoshinaga K, Ukai Y (1993) Optimal spatial and temporal measurement repetition for selection in Japanese persimmon breeding. HortScience 28:838–841

    Google Scholar 

Download references

Acknowledgments

We thank Tamami Nakasumi and Junko Azuma (NIFTS) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, Y., Mitani, N., Sato, A. et al. Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 211, 295–310 (2016). https://doi.org/10.1007/s10681-016-1737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1737-8

Keywords

Navigation