Skip to main content

Advertisement

Log in

Genetic Diversity and Population Structure in Chinese Indigenous Poplar (Populus simonii) Populations Using Microsatellite Markers

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Populus simonii Carr. is an important ecological and commercial breeding species in northern China; however, human interference during the last few centuries has led to the reduction and fragmentation of natural populations. To evaluate genetic diversity and differentiation within and among existing populations, we used 20 microsatellite markers to examine the genetic variation and structure of 16 natural populations. Our results indicated that the level of genetic diversity differed among populations, with average number of alleles per locus (AR) and expected heterozygosity (H e) ranging from 3.7 to 6.11 and 0.589 to 0.731, respectively. A marginal population from Qilian in the Qinghai–Tibetan Plateau showed the highest values (AR = 6.11, H e = 0.731), and the Zhangjiakou and Yishui populations showed the lowest values (AR = 4.08, H e = 0.589 and AR = 3.7, H e = 0.604). The inbreeding coefficient (F IS) values for all populations were positive, which indicated an excess of homozygotes. The microsatellites allowed the identification of a significant subpopulation structure (K = 3), consistent with an isolation by distance model for P. simonii populations. Additionally, molecular variance analysis revealed that 14.2 % of the variation resided among populations, and 85.8 % could be attributed to variation within populations. These data provide valuable information for natural resource conservation and for optimization of breeding programs in the immediate future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arens P, Coops H, Jansen J, Vosman B (1998) Molecular genetic analysis of black poplar (Populus nigra L.). Mol Ecol 7:11–18

    Article  CAS  Google Scholar 

  • Arnaud-haond S, Belkhir K (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Atangana AR, Beaulieu J, Khasa DP (2010) Wild genetic diversity preservation in a small-sized first generation breeding population of Allanblackia floribunda (Clusiaceae). Tree Genet Genomes 6:127–136

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards A (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Gen 19:233–257

    Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Cole CT (2005) Allelic and population variation of microsatellite loci in aspen (Populus tremuloides). New Phytol 167:155–164

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from Allele Frequency Data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  • Derero A, Gailing O, Finkeldey R (2011) Maintenance of genetic diversity in Cordia africana Lam.: a declining forest tree species in Ethiopia. Tree Genet Genomes 7:1–9

    Article  Google Scholar 

  • Du QZ, Wang BW, Wei ZZ, Li BL, Zhang DQ (2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered. doi:10.1093/jhered/ess061

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2220

    Article  PubMed  CAS  Google Scholar 

  • Excoffier LLG, Schneider S (2005) Arlequin ver.3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Fajardo D, Morales J, Zhu H, Steffan S, Harbut R, Bassil N, Hummer K, Polashock J, Vorsa N, Zalapa J (2012) Discrimination of American cranberry cultivars and assessment of clonal heterogeneity using microsatellite markers. Plant Mol Biol Rep. doi:10.1007/s11105-012-0497-4

  • Felsenstein J (2004) PHYLIP (phylogeny inference package) version 3.6. Department of Genetics, University of Washington, Seattle

  • Fu GS, Yang ZX, Ma JC, Zhang JH (2005) Setup of Populus simonii preservation gene bank and analysis of its biological feature. Forest Sci and Technol 30:1–4

    Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at http://www.unil.ch/izea/softwares/fstat.html

  • Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European Aspen (Populus tremula L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6:95–124

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans Royal Soc London (Ser B) 351:1291–1298

    Article  Google Scholar 

  • Imbert E, Lefèvre F (2003) Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J Ecol 91:447–456

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey LJ, Andrew JB, Scott TK (2005) Isolation by distance, web service. BMC Genet 6:13

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kamiya K, Moritsuka E, Yoshida T, Yahara T, Tachida H (2008) High population differentiation and unusual haplotype structure in a shade-intolerant pioneer tree species, Zanthoxylum ailanthoides (Rutaceae) revealed by analysis of DNA polymorphism at four nuclear loci. Mol Ecol 17:2329–2338

    Google Scholar 

  • Keneni G, Bekele E, Imtiaz M, Dagne K, Getu E, Assefa F (2012) Genetic diversity and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Mol Biol Rep 30:654–665

    Article  Google Scholar 

  • Lee KM, Kim YY, Hyun JO (2011) Genetic variation in populations of Populus davidiana Dode based on microsatellite marker analysis. Genes and Genom 33:163–171

    Article  Google Scholar 

  • Li CC (1976) First course in population genetics. Boxwood, Pacific Grove

    Google Scholar 

  • Li Q, Kijima A (2002) Identification of novel microsatellite loci in the Pacific oyster (Crassostrea gigas) by magnetic bead hybridization selection. Tohoku J of Agr Rea 53:25–32

    CAS  Google Scholar 

  • López-Gartner G, Cortina H, McCouch S, Moncada M (2009) Analysis of genetic structure in a sample of coffee (Coffea arabica L.) using fluorescent SSR markers. Tree Genet Genomes 5:435–446

    Article  Google Scholar 

  • Lv W (2002) Populus simonii in North of China. Ningxia, Ningxia People’s Press

  • Makrem A, Najeh BF, Laarbi KM, Mohamed B (2006) Genetic diversity in Tunisian Ceratonia siliqua L. (Caesalpinioideae) natural populations. Genet Resour Crop Evol 53:1501–1511

    Article  Google Scholar 

  • Mantel N (1967) Ranking procedures for arbitrarily restricted observation. Biometrics 23:65–78

    Google Scholar 

  • Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856

    Article  PubMed  CAS  Google Scholar 

  • Neel MC, Ellstrand NC (2003) Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum. Conserv Genet 4:337–352

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Cons Biol 12:844–855

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pospíškova M, Šalková I (2006) Population structure and parentage analysis of black poplar along the Morava River. Can J For Res 36:1067–1076

    Article  Google Scholar 

  • Pritchard JK, Donnelly P (2001) Case–control studies of association in structured or admixed populations. Theor Popul Biol 60:227–237

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rathmacher G, Niggemann M, Kohnen M, Ziegenhagen B, Bialozyt R (2010) Short-distance gene flow in Populus nigra L. accounts for small-scale spatial genetic structures: implications for in situ conservation measures. Conserv Genet 11:1327–1338

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Whole- and part-flower self-pollination in Glycine clandestine and G. argyrea and the evolution of autogamy. Evolution 45:1651–1664

    Article  Google Scholar 

  • Slavov GT, Leonardi S, Adams WT, Strauss SH, DiFazio SP (2010) Population substructure in continuous and fragmented stands of Populus trichocarpa. Heredity 105:348–357

    Article  PubMed  CAS  Google Scholar 

  • Slavov GT, Zhelev P (2010) Salient biological features, systematics, and genetic variation of Populus. Plant Genetics and Genomics: Crops and Models 8:15–38

    Article  Google Scholar 

  • Sloan DB, Barr CM, Olson MS, Keller SV, Taylor DR (2008) Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol Biol Evol 25:243–246

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Cottrell JE, Lefèvre F, van der Schoot J, Arens P, Vosman B, Tabbener HE, Grassi F, Fossati T, Castiglione S, Krystufek V, Fluch S, Burg K, Vornamf B, Pohl A, Gebhardt K, Alba N, Agúndez D, Maestro C, Notivol E, Volosyanchuk R, Pospísková M, Bordács S, Bovenschenm J, Van Damm BC, Koelewijnm HP, Halfmaerten D, Ivens B, van Slycken J, Vanden Broeck A, Storme V, Boerjan W (2008) Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration. Forest Ecol Manag 255:1388–1399

    Article  Google Scholar 

  • Smulders MJM, Schoot JVD, Arens P, Vosman B (2001) Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Mol Ecol Notes 1:188–190

    Article  CAS  Google Scholar 

  • Storme V, Vanden Broeck A, Ivens B, Halfmaerten D, Van Slycken J, Castiglione S, Grassi F, Fossati T, Cottrell JE, Tabbener HE, Lefèvre F, Saintagne C, Fluch S, Krystufek V, Burg K, Bordács S, Borovics A, Gebhardt K, Vornam B, Pohl A, Alba N, Agúndez D, Maestro C, Notivol E, Bovenschen J, van Dam BC, van der Schoot J, Vosman B, Boerjan W, Smulders MJ (2004) Ex-situ conservation of Black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor Appl Genet 108:969–981

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ. 1969. Kruskal–Wallis test. In: Biometry. San Francisco: Freeman, p. 388–389.

  • Suvanto LI, Latva-Karjanmaa TB (2005) Clone identification and clonal structure of the European aspen (Populus tremula). Mol Ecol 14:2851–2860

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tixier MH, Sourdille P, Röder M, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    Google Scholar 

  • Tuskan GA, Gunter LE, Yang ZK, Yin TM, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J Forest Res 34:85–93

    Article  CAS  Google Scholar 

  • Wang J, Wu YX, Ren GP, Guo QH, Liu JQ, Lascoux M (2011) Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS One 6:e26530

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wang BL, Wei ZZ, Du QZ, Zhang DQ, Li BL (2012) Development of 35 microsatellite markers from heat stress transcription factors in Populus simonii (Salicaceae). Am J Bot 99:e357–e361

    Article  PubMed  Google Scholar 

  • Wei ZZ, Pan W, Zhao X, Zhang JF, Li BL, Zhang DQ (2010a) Morphological and physiological genetic diversity of Populus simonii in northeastern and north China. J Beijing Forest Univ 32:8–14

    Google Scholar 

  • Wei ZZ, Du QZ, Guo Q, Zhang JF, Li BL, Zhang DQ (2010b) DREB gene and its application in analyzing population structure in Populus simonii. Chin Bull Bot 45:556–565

    CAS  Google Scholar 

  • Wei ZZ, Zhao X, Pan W, Zhang JF, Li BL, Zhang DQ (2011) Phenotypic variation among five provenances of Populus simonii in northern China. Forest Stud Chin 13:97–103

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wyman J, Bruneau A, Tremblay M-F (2003) Microsatellite analysis of genetic diversity in four populations of Populus tremuloides in Quebec. Can J Bot Rev 81:360–367

    Article  Google Scholar 

  • Xu WY (1988) Poplar. Harbin, Heilongjiang People’s Press

  • Yang ZX, Li GT, Gao ZH (1999) An survey for Populus Simonii resources in four provinces of northwest China. World Forest Res 12:49–53

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the following sources: the Forestry Public Benefic Research Program (no. 201204306), Project of the National Natural Science Foundation of China (nos. 30600479 and 30872042), and Program for New Century Excellent Talents in University (no. NCET-07-0084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bailian Li or Deqiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 111 kb)

ESM2 (DOC 64 kb)

ESM3 (DOC 369 kb)

ESM4 (DOC 326 kb)

ESM5 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Du, Q., Zhang, J. et al. Genetic Diversity and Population Structure in Chinese Indigenous Poplar (Populus simonii) Populations Using Microsatellite Markers. Plant Mol Biol Rep 31, 620–632 (2013). https://doi.org/10.1007/s11105-012-0527-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0527-2

Keywords

Navigation