Skip to main content
Log in

Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Due to the high propensity for genomic alteration of their genomes, wine yeast (Saccharomyces cerevisiae) strains are very diverse. Genetic/genomic differences often correlate with different enological and technological properties. Experimental data indicate that the plasticity of the genome makes wine yeast populations capable of adapting to the continuously changing and rather harsh fermentation environment. A model is proposed for this fast adaptive genome evolution (FAGE) that explains the roles of the changing clonal composition of the population during fermentation, genome purification by meiosis at the end of fermentation and subsequent autodiploidisation of the spore clones in the next vintage, and the generation of new genomes through conjugation of non-sister spore clones (heterodiploidisation). Possibilities for genome stabilisation are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6:702–715

    Article  PubMed  CAS  Google Scholar 

  • Antunovics Z, Irinyi L, Sipiczki M (2005) Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. J Appl Microbiol 98:971–979

    Article  CAS  PubMed  Google Scholar 

  • Ayoub MJ, Legras JL, Saliba R, Gaillardin C (2006) Application of Multi Locus Sequence Typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon. J Appl Microbiol 100:699–711

    Article  CAS  PubMed  Google Scholar 

  • Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1:111–125

    Article  CAS  PubMed  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6:367–382

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari G, Zenwirth D, Sherman A, Simchen G, Lavi U, Hillel J (2005) Application of SNPs, for assessing biodiversity and phylogeny among yeast strains. Heredity 95:493–501

    Article  CAS  PubMed  Google Scholar 

  • Bidenne C, Blondin B, Dequin S, Vezinhet F (1992) Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet 22:1–7

    Article  CAS  PubMed  Google Scholar 

  • Briones AI, Ubeda J, Grando MS (1996) Differentiation of Saccharomyces cerevisiae strains isolated from fermenting musts according to their karyotype pattern. Int J Food Microbiol 28:369–377

    Article  CAS  PubMed  Google Scholar 

  • Blasco L, Feijoo-Soita L, Veiga-Crespo P, Villa TG (2008) Genetic stabilization of Saccharomyces cerevisiae oenological strains by using benomyl. Int Microbiol 11:127–132

    PubMed  Google Scholar 

  • Bradbury JE, Richards KD, Niederer HA, Lee SA, Dunbar PR, Gardner RC (2006) A homozygous diploid set of commercial wine strains. Antonie Leeuwenhoek 89:27–37

    Article  CAS  PubMed  Google Scholar 

  • Budroni M, Giordano G, Pinna G, Farris GA (2000) A genetic study of natural flor strains of Saccharomyces cerevisiae isolated during biological ageing from Sardinian wines. J Appl Microbiol 89:657–662

    Article  CAS  PubMed  Google Scholar 

  • Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MAS (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9:524

    Article  PubMed  CAS  Google Scholar 

  • Carro D, Pina B (2001) Genetic analysis of the karyotypes instability in natural wine yeast strains. Yeast 18:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Carro D, Bartra E, Pina B (2003a) Karyotype reaarangements in a wine yeast strain by rad52-dependent and rad52-independent mechanisms. Appl Environ Microbiol 69:2161–2165

    Article  CAS  PubMed  Google Scholar 

  • Carro D, Garcia-Martinez J, Perez-Ortin JE, Pina B (2003b) Structural characterization of chromosome I size variants from a natural yeast strain. Yeast 20:171–183

    Article  CAS  PubMed  Google Scholar 

  • Castrejon F, Martinez-Force E, Benitez T, Codon AC (2004) Genetic analysis of apomictic wine yeasts. Curr Genet 45:187–196

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri D, Townsend JP, Hartl DL (2000) Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci USA 97:12369–12374

    Article  CAS  PubMed  Google Scholar 

  • Cocolin L, Pepe V, Comitini F, Comi G, Ciani M (2004) Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res 5:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cummings J, Fogel S (1978) Genetic homology of wine yeasts with Saccharomyces cerevisiae. J Inst Brew 84:267–270

    CAS  Google Scholar 

  • deBarros Lopes M, Soden A, Henschke P, Langridge P (1996) PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol 62:4514–4520

    CAS  Google Scholar 

  • deBarros Lopes M, Rainieri S, Henschke PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 49:915–924

    Article  CAS  Google Scholar 

  • Divol B, van Rensburg P (2007) PGU1 gene natural deletion is responsible for the absence of endo-polydalacturonase activity in some wine strains of Saccharomyces cerevisiae. FEMS Yeast Res 7:1328–1339

    Article  CAS  PubMed  Google Scholar 

  • Dubourdieu D, Sokol A, Zucca J, Thalouarn P, Dattee A, Aigle M (1987) Identification des souches de levures isolées de vins par l’analyse de leur AND mitochondrial. Connaiss Vigne Vin 21:267–278

    Google Scholar 

  • Dunham MJ, Badrane H, Ferea T, Adams J, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149

    Article  CAS  PubMed  Google Scholar 

  • Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6:53

    Article  PubMed  CAS  Google Scholar 

  • Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast ppopulations and their effect on the sensory character of Riesling and Chardonnay wines. J Appl Microbiol 85:779–789

    Article  CAS  PubMed  Google Scholar 

  • Erasmus DJ, van Vuuren HJJ (2009) Genetic basis for osmosensitivity and genetic instability of the wine yeast Saccharomyces cerevisiae VIN7. Am J Enol Vitic 60:145–154

    CAS  Google Scholar 

  • Erasmus DJ, van der Merve GK, van Vuuren HJJ (2003) Genome-wide expression analysis: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res 3:375–399

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1:66–71

    Article  CAS  PubMed  Google Scholar 

  • Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo M, Barrales RR, Ibeas JI, Jimenez J (2006) Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci USA 103:11228–11233

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  CAS  PubMed  Google Scholar 

  • Frezier V, Dubourdieu D (1992) Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. Am J Enol Vitic 43:375–380

    Google Scholar 

  • Gallego FJ, Perez MA, Martinez I, Hidalgo P (1998) Microsatellites obtained from database sequences are useful to characterize Saccharomyces cerevisiae strains. Am J Enol Vitic 49:350–351

    CAS  Google Scholar 

  • Gimeno-Alcaniz JV, Matallana E (2001) Performance of industrial strains of Saccharomyces cerevisiae during wine fermentation is affected by manipulation strategies based on sporulation. Syst Appl Microbiol 24:639–644

    Article  CAS  Google Scholar 

  • Giudici P, Zambonelli C (1992) Biometric and genetic study on acetic acid production for breeding of wine yeast. Am J Enol Vitic 43:370–374

    CAS  Google Scholar 

  • Gonzalez Techera A, Jubany S, Carrau FM, Gaggero C (2001) Differentiation of industrial wine yeast strains using microsatellite markers. Lett Appl Microbiol 33:71–75

    Article  CAS  PubMed  Google Scholar 

  • Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, Yamane Y, Hara S (1998) SSU1R, a sulfite resisitance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng 86:427–433

    Article  CAS  Google Scholar 

  • Grando MS, Ubeda J, Briones AI (1994) RAPD analysis of wine Saccharomyces strains differentiated by pulsed field gel electrophoresis. Biotechnol Tech 8:557–560

    Article  CAS  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and “flor” film ageing of dry sherry-type wines. Yeast 13:101–117

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AR, Santamaria P, Epifanio S, Garijo P, Lopez R (1999) Ecology of spontaneous fermentation in one winery during 5 consecutive years. Lett Appl Microbiol 29:411–415

    Article  Google Scholar 

  • Howell KS, Bartowsky EJ, Fleet GH, Henschke PA (2004) Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Lett Appl Microbiol 38:315–320

    Article  CAS  PubMed  Google Scholar 

  • Ibeas JI, Jimenez J (1996) Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids. Curr Genet 30:410–416

    Article  CAS  PubMed  Google Scholar 

  • Infante JJ, Dombeck K, Rebordinos L, Cantoral JM, Young ET (2003) Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165:1745–1759

    CAS  PubMed  Google Scholar 

  • Izquierdo Canas PM, Ubeda Iranzo JF, Briones Perez AI (1997) Study of the karyotype of wine yeast isolated in the region of Valdepenas in two consecutive vintages. Food Microbiol 14:221–225

    Article  Google Scholar 

  • Johnston JR, Mortimer RK (1986) Electrophoretic karyotyping of laboratory and commercial strains of Saccharomyces and other yeasts. Int J Syst Bacteriol 36:569–572

    Article  CAS  Google Scholar 

  • Johnston JR, Baccari C, Mortimer RK (2000) Genotypic characterisation of strains of commercial wine yeasts by tetrad analysis. Res Microbiol 151:583–590

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol Lett 221:249–255

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol 102:73–83

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Merdinglu D, Cornuet J-M, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102

    Article  CAS  PubMed  Google Scholar 

  • Le Jeune C, Erny C, Demuyter C, Lollier M (2006) Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol 23:709–716

    Article  PubMed  CAS  Google Scholar 

  • Longo E, Vezinhet F (1993) Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl Environ Microbiol 59:322–326

    CAS  PubMed  Google Scholar 

  • Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borthe N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7:953–965

    Article  CAS  PubMed  Google Scholar 

  • Lopez V, Fernandez-Espinar MT, Barrio E, Ramon D, Querol A (2003) A new PCR-based method for monitoring inoculated wine fermentations. Int J Food Microbiol 81:63–71

    Article  CAS  PubMed  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren HJJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    Article  CAS  PubMed  Google Scholar 

  • Martinez P, Codon C, Perez L, Benitez T (1995) Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast 11:1399–1411

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Cosgaya P, Vasquez C, Gac S, Ganga A (2007) High degree of correlation between molecular polymorphism and geographic origin of wine yeast strains. J Appl Microbiol 103:2185–2195

    Article  CAS  PubMed  Google Scholar 

  • Marullo P, Bely M, Masneuf-Pomerade I, Aigle M, Dubourdieu D (2004) Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4:711–719

    Article  CAS  PubMed  Google Scholar 

  • Marullo P, Aigle M, Bely M, Masneuf-Pomerade I, Durrens P, Dubourdieu D, Yvert G (2007) Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952

    Article  CAS  PubMed  Google Scholar 

  • Mesa JJ, Infante JJ, Rebordinos L, Cantoral JM (1999) Characterization of yeasts involved in the biological ageing of sherry wines. Lebensm Wiss Technol 32:114–120.

    Google Scholar 

  • Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5:1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Miklos I, Varga T, Nagy A, Sipiczki M (1996) Karyotyping and segregation of chromosomes in wine yeasts used for hybridization. Proceedings of the 11th International Oenological Symposium, Sopron, pp 105–113

  • Miklos I, Nagy A, Sipiczki M (1997) Genome istability and chromosomal rearrangements in a heterothallic wine yeast. J Basic Microbiol 37:345–354

    Article  CAS  PubMed  Google Scholar 

  • Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10:403–409

    Article  CAS  PubMed  Google Scholar 

  • Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150:199–204

    Article  CAS  PubMed  Google Scholar 

  • Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Nadal D, Colomer B, Pina B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950

    CAS  PubMed  Google Scholar 

  • Nadal D, Carro D, Fernández LJ, Pina B (1999) Analysis and dynamics of the chromosomal complement of wild sparkling-wine yeast strains. Appl Environ Microbiol 65:1688–1695

    CAS  PubMed  Google Scholar 

  • Naumov GI, Naumova ES, Masneuf I, Aigle M, Kondratieva VI, Dubourdieu D (2000) Natural polyploidisation of some cultured yeast Saccharomyces sensu stricto: auto- and allotetraploidy. Syst Appl Microbiol 23:442–449

    CAS  PubMed  Google Scholar 

  • Naumov GI, Naumova ES, Antunovics Z, Sipiczki M (2002) Saccharomyces bayanus var. uvarum in Tokaj wine-making of Slovakia and Hungary. Appl Microbiol Biotechnol 59:727–730

    Article  CAS  PubMed  Google Scholar 

  • Ness F, Lavallee F, Dubourdieu D, Aigle M, Dulau L (1993) Identification of yeast strains using the polymerase chain reaction. J Sci Food Agric 62:89–94

    Article  CAS  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J-L, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA 106:16333–16338

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of wine yeast strains. Genome Res 12:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Pizarro FJ, Jewett MC, Nielsen J, Agosin E (2008) Growth temperature exerts a differential physiological and transcriptional response in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74:6358–6368

    Article  CAS  PubMed  Google Scholar 

  • Povhe JK, Cadez N, Zagorc T, Bubic V, Zupec A, Raspor P (2001) Yeast population dynamics in five spontaneous fermentations of Malvasia must. Food Microbiol 18:247–259

    Article  CAS  Google Scholar 

  • Puig S, Querol A, Barrio E, Pérez-Ortín JE (2000) Mitotic recombination and genetic changes in Saccharomayces cerevisiae during wine fermentation. Appl Environ Microbiol 66:2057–2061

    Article  CAS  PubMed  Google Scholar 

  • Querol A, Barrio E, Ramon D (1994) Population dynamics of natural Saccharomyces strains during wine fermentation. Int J Food Microbiol 21:315–323

    Article  CAS  PubMed  Google Scholar 

  • Quesada MP, Cenis JL (1995) Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am J Enol Vitic 46:204–208

    CAS  Google Scholar 

  • Rachidi N, Barre P, Blondin B (1999) Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet 261:841–850

    Article  CAS  PubMed  Google Scholar 

  • Ramirez M, Regodon JA, Perez F, Rebello JE (1999) Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles. Biotechnol Bioeng 65:212–218

    Article  CAS  PubMed  Google Scholar 

  • Ramirez M, Vinagre A, Ambrona J, Molina F, Maqueda M, Robello JE (2004) Genetic instability of heterozygous, hybrid, natural wine yeasts. Appl Environ Microbiol 70:4686–4691

    Article  CAS  PubMed  Google Scholar 

  • Ramirez M, Ambrona J (2008) Construction of sterile ime1Δ-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Appl Environ Microbiol 74:2129–2143

    Article  CAS  PubMed  Google Scholar 

  • Ristow H, Seyfarth A, Lochmann E-R (1995) Chromosomal damages by ethanol and acetaldehyde in Saccharomyces cerevisiae as studied by pulsed field gel electrophoresis. Mutat Res 326:165–170

    CAS  PubMed  Google Scholar 

  • Romano P, Soli MG, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 50:1064–1067

    CAS  PubMed  Google Scholar 

  • Romano P, Caruso M, Capece A, Lipani G, Paraggio M, Fiore C (2003) Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape must. World J Microbiol Biotechnol 19:311–315

    Article  CAS  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    Article  CAS  PubMed  Google Scholar 

  • Sabate J, Cano J, Querol A, Guiilamon JM (1998) Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol 26:452–455

    Article  CAS  PubMed  Google Scholar 

  • Salmon J-M (1997) Enological fermentation kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. J Ferment Bioeng 83:253–260

    Article  CAS  Google Scholar 

  • Sancho ED, Hernandez E, Rodriguez-Navarro A (1986) Presumed sexual isolation in yeast populations during production of Sherrylike wine. Appl Environ Microbiol 51:395–397

    CAS  PubMed  Google Scholar 

  • Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26

    Article  CAS  PubMed  Google Scholar 

  • Schuller D, Casal M (2007) The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie Leeuwenhoek 91:137–150

    Article  CAS  PubMed  Google Scholar 

  • Schuller D, Pereira L, Alves H, Cambon B, Dequin S, Casal M (2007) Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast 24:625–636

    Article  CAS  PubMed  Google Scholar 

  • Schütz M, Gafner J (1993) Analysis of yeast diversity during spontaneous and induced alcoholic fermentations. J Appl Bacteriol 75:551–558

    Google Scholar 

  • Schütz M, Gafner J (1994) Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Lett Appl Microbiol 19:253–257

    Article  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:65–67

    Article  Google Scholar 

  • Sipiczki M, Romano P, Lipani G, Miklos I, Antunovics Z (2001) Analysis of yeasts derived from natural fermentation in a Tokaj winery. Antonie Leeuwenhoek 79:97–105

    Article  CAS  Google Scholar 

  • Sipiczki M, Romano P, Capece A, Paraggio M (2004) Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine. J Appl Microbiol 96:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8:996–1007

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T (1978) Genetic analysis of a German wine yeast. Bull Brew Sci 24:39–47

    Google Scholar 

  • Thornton RJ (1982) Selective hybridization of pure culture wine yeasts. Eur J Appl Microbiol Biotechnol 14:159–164

    Article  CAS  Google Scholar 

  • Thornton RJ (1986) Genetic characterization of New Zealand and Australian wine yeasts. Antonie Leeuwenhoek 52:97–103

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20:955–963

    Article  CAS  PubMed  Google Scholar 

  • Varela C, Cardenas J, Melo F, Agosin E (2005) Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22:369–383

    Article  CAS  PubMed  Google Scholar 

  • Versavaud A, Couroux P, Roulland C, Dulau C, Hallet JN (1995) Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from wine-producing area of Charentes, France. Appl Environ Microbiol 61:3521–3529

    CAS  PubMed  Google Scholar 

  • Vezinhet F, Blondin B, Hallet J-N (1990) Chromosomal DNA pattern and mitochondrial DNA polymorphism as tool for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32:568–571

    Article  CAS  Google Scholar 

  • Vezinhet F, Hallet J-N, Valade M, Poulard A (1992) Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43:83–86

    Google Scholar 

  • Winzeler EA, Castillo-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163:79–89

    CAS  PubMed  Google Scholar 

  • Yamamoto N, Yamamoto N, Amemiya H, Yokomori Y, Shimizu K, Totosuka A (1991) Electrophoretic karyotypes of wine yeasts. Am J Enol Vitic 42:358–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Sipiczki.

Additional information

This paper is part of the special issue “Wine microbiology and safety: from the vineyard to the bottle (Microsafetywine)”, 19–20 November 2009, Martina Franca (Italy).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipiczki, M. Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61, 85–93 (2011). https://doi.org/10.1007/s13213-010-0086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0086-4

Keywords

Navigation