Skip to main content
Log in

Regulation of source/sink relations by cytokinins

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Many physiological effects of cytokinins are well established and are known to be involved in various aspects of the plant life cycle. In contrast, little is known about how these effects are evoked at the molecular level. Since cytokinins have been shown to play a major role in the regulation of various processes associated with active growth and thus an enhanced demand for carbohydrates, a link to the regulation of assimilate partitioning has been suggested. This review discusses the current knowledge of the role of cytokinins in the regulation of source-sink relations, based on the finding of the co-ordinated cytokinin induction of an extracellular invertase and a hexose transporter. The induction of these key enzymes of an apoplastic unloading mechanism may be one important molecular prerequisite for different cytokinin-mediated effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelghani M.O., Suty L., Chen J.N., Renaudin J.-P. and Teyssendier de la Serve B. 1991. Cytokinins modulate the steady-state levels of light-dependent proteins and mRNAs in tobacco cell suspensions. Plant Sci. 77: 29-40.

    Google Scholar 

  • Angra S.R. and Mandahar C.L. 1993. Involvement of carbohydrates and cytokinins in pathogenicity of Helminthosporium carbonum. Mycopathologia 121: 91-99.

    Google Scholar 

  • Bauer P., Ratet P., Crespi M.D., Schutze M. and Kondorosi A. 1996. Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsENOD12A expression patterns in alfalfa roots. Plant J. 10: 91-105.

    Google Scholar 

  • Binns A.N. 1994. Cytokinin accumulation and action: Biochemical, genetic, and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 173-196.

    Google Scholar 

  • Borisjuk L., Walenta S., Weber H., Mueller-Klieser W. and Wobus U. 1998. High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: Glucose as a possible developmental trigger. Plant J. 15: 583-591.

    Google Scholar 

  • Brenner M.L. and Cheikh N. 1995. The role of phytohormones in photosynthate partitioning and seed filling. In: Davies P.J. (ed.), Plant Hormones. Kluwer Academic Press, Dordrecht, Boston, London, pp. 649-670.

    Google Scholar 

  • Burssens S., Van Montagu M. and Inzé D. 1998. The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36: 9-19.

    Google Scholar 

  • Chen C.-M. and Ertl J.R. 1994. Cytokinin biosynthetic enzymes in plants and slime mold. In: Mok D.W.S. and Mok M.C. (eds), 365 Cytokinins: Chemistry, activity and function. CRC Press, Boca Raton, pp. 81-85.

    Google Scholar 

  • Chen C.-M., Ertl J., Yang M.S. and Chang C.C. 1987. Cytokinin-induced changes in the population of translatable mRNA in excised pumpkin cotyledons. Plant Sci. 52: 164-174.

    Google Scholar 

  • Chen C-M., Jin G., Andersen B.R. and Ertl J.R. 1993. Modulation of plant gene expression by cytokinins. Aust. J. Plant Physiol. 20: 609-619.

    Google Scholar 

  • Chen C.-M. and Leisner S.M. 1985. Cytokinin-modulated gene expression in excised pumpkin cotyledons. Plant Physiol. 77: 99-103.

    Google Scholar 

  • Crowell D.M., Kadlecek A.T., John M.C. and Amasino R.M. 1990. Cytokinin-induced mRNAs in cultured soybean cells. Proc. Natl. Acad. Sci. USA 87: 8815-8819.

    Google Scholar 

  • 1995. Plant Hormones. Kluwer Academic Press, Dordrecht, Boston, London.

  • Dominov J.A., Stenzler L., Lee S., Schwarz J.J., Leisner S. and Howell S.H. 1992. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback inhibition. Plant Cell. 4: 451-461.

    Google Scholar 

  • Ehness R., Ecker M., Godt D.E. and Roitsch T. 1997. Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell. 9: 1825-1841.

    Google Scholar 

  • Ehneß R. and Roitsch T. 1997. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in C. rubrum by cytokinins. Plant J. 11: 539-548.

    Google Scholar 

  • Engelbrecht L., Orban U. and Heese W. 1969. Leaf-miner caterpillars and cytokinins in the “green islands” of autumn leaves. Nature 223: 319-321.

    Google Scholar 

  • Eschrich W. 1980. Free space invertase, its possible role in phloem unloading. Ber. Dtsch. Bot. Ges. 93: 363-378.

    Google Scholar 

  • Evert R.F. 1982. Sieve-tube structure in relation to function. Bio-Science 32: 789-795.

    Google Scholar 

  • Fillion L., Atanassova R., Ageorges M.L.A., Gaillard C., Travier S., Romieu C. et al. 1999. Molecular characterization and expression of sugar transporters from grape (Vitis vinifera L.) berry. In: Proceedings of the international conference on assimilate transport and partitioning, Newcastle, Australia., p. 184.

  • Gan S. and Amasino R.M. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988.

    Google Scholar 

  • Gatz C. 1996. Chemically inducible promoters in transgenic plants. Curr. Opin. Biotechn. 7: 168-172.

    Google Scholar 

  • Godt D.E. and Roitsch T. 1997. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol. 115: 273-282.

    Google Scholar 

  • Harms K., Woehner R.V., Schulz B. and Frommer W.B. 1994. Isolation and characterization of P-type H+-ATPase genes from potato. Plant Mol. Biol. 26: 979-988.

    Google Scholar 

  • Ho L.C., Lecharny A. and Willenbrink J. 1991. Sucrose cleavage in relation to import and metabolism of sugars in sink organs. In: Bonnemain J.S., Delrot S., Lucas W.J. and Dainty J. (eds), Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, France, pp. 178-186.

  • Houba-Hérin N., Pethe C., d'Alayer J. and Laloue M. 1999. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 17: 615-626.

    Google Scholar 

  • Izhaki A., Shoseyov O. and Weiss D. 1996. Temporal, spatial and hormonal regulation of the S-adenosylmethionine synthetase gene in petunia. Physiol. Plant 97: 90-94.

    Google Scholar 

  • Koch K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509-540.

    Google Scholar 

  • Krapp A. and Stitt M. 1994. Influence of high carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues. Plant Cell. Environment 17: 861-866.

    Google Scholar 

  • Kuiper D. 1993. Sink strength: Established and regulated by plant growth regulators. Plant Cell. and Environment 16: 1025-1026.

    Google Scholar 

  • Lefebre R., Vasseur J., Backoula E. and Coullerot J.P. 1992. Participation of carbohydrate metabolism in the organogenic orientation of Cichorium intybus tissues cultivated in vitro. Can. J. Bot. 70: 1897-1902.

    Google Scholar 

  • Leonard N.J., Hecht S.M., Skoog F. and Schmitz R.Y. 1959. Cytokinins: synthesis of 6(3-methyl-3-butenylamino)9-β-D-ribofuranosylpurine (3iPA), and the effect of side-chain unsaturation on the biological activity of isopentylaminopurines and their ribosides. Proc. Natl. Acad. Sci. USA 59: 15-21.

    Google Scholar 

  • Leopold A.C. and Kawase M. 1964. Benzyladenine effects on bean leaf growth and senescence. Am. J. Bot. 51: 294-298.

    Google Scholar 

  • Lerbs S., Lerbs W., Klyachko N.L., Romanko E.G., Kulaeva O.N., Wollgiehn R. et al. 1984. Gene expression in cytokinin and light-mediated plastogenesis of Cucurbita cotyledons: ribulose-1,5-bisphosphate carboxylase-oxygenase. Planta 162: 289-298.

    Google Scholar 

  • Li C.J., Guevara E., Gerrera J. and Bangerth F. 1995. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants. Physiol. Plant 94: 465-469.

    Google Scholar 

  • Linden J.C., Ehness R. and Roitsch T. 1996. Regulation by ethylene of apoplastic invertase expression in Chenopodium rubrum tissue culture cells. Plant Growth Regul. 19: 219-222.

    Google Scholar 

  • Lu J.L., Ertl J. and Chen C.M. 1990. Cytokinin enhancement of the light induction of nitrate reductase transcript levels in etiolated barley leaves. Plant Mol. Biol. 14: 585-594.

    Google Scholar 

  • Machackova I., Krekule J., Eder J., Seidlova F. and Strnad M. 1993. Cytokinins in photoperiodic induction of flowering in Chenopodium species. Physiol. Plant 87: 160-166.

    Google Scholar 

  • Meilan R. and Morris R.O. 1994. Cloning the cytokinin oxidase gene. Plant Physiol. 105: 68.

    Google Scholar 

  • Memelink J., Hoge J.H.C. and Schilperoort R.A. 1987. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J. 6: 3579-3583.

    Google Scholar 

  • Miller E.M. and Chourey P.S. 1992. The maize invertase-deficient miniature-1 seed mutant is associated with aberrant pedicel and endosperm development. Plant Cell. 4: 297-305.

    Google Scholar 

  • Mok M.C., Mok D.W.S., Turner J.E. and Mujer C.V. 1987. Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. Hort. Sci. 22: 1194-1197.

    Google Scholar 

  • Morris R.O., Bilyeu-Kristin D., Laskey J.G. and Cheikh N.N. 1999. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Com. 255: 328-333.

    Google Scholar 

  • Mothes K. and Engelbrecht L. 1963. On the activity of a kinetin-like root factor. Life Sci. 11: 852-857.

    Google Scholar 

  • Müller K. and Leopold A.C. 1966a. The mechanism of kinetin-induced transport in corn leaves. Planta 68: 186-205.

    Google Scholar 

  • Müller K. and Leopold A.C. 1966b. Correlative aging and transport of P32 in corn leaves under the influence of kinetin. Planta 68: 167-185.

    Google Scholar 

  • Murray J.A.H., Freeman D., Greenwood J., Huntley R., Makkerh J., Riou-Khamlichi C. et al. 1998. Plant D cyclins and retino-blatoma protein homologues. In: Francis D. (ed.), Plant cell division. Portland Press, London, pp. 99-127.

    Google Scholar 

  • Ori N., Juarez M.T., Jackson D., Yamaguchi J., Banowetz G.M. and Hake S. 1999. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene KNOTTED1 under the control of a senescence-activated promoter. Plant Cell. 11: 1073-1080.

    Google Scholar 

  • Richmond A.E. and Lang A. 1957. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125: 650-651.

    Google Scholar 

  • Riou-Khamlichi C., Huntley R., Jacqmard A. and Murray J.A.H. 1999. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541-1544.

    Google Scholar 

  • Roitsch T. 1999. Source-sink regulation by sugars and stress. Curr. Op. Plant Biol. 2: 198-206.

    Google Scholar 

  • Roitsch T., Bittner M. and Godt D.E. 1995. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analogue and tissue specific expression suggest a role in sink source regulation. Plant Physiol. 108: 285-294.

    Google Scholar 

  • Roitsch T. and Tanner W. 1994. Expression of a sugar transporter gene family in photoautotrophic suspension cultures of Chenopodium rubrum. Planta 193: 365-371.

    Google Scholar 

  • Roitsch T. and Tanner W. 1996. Cell wall invertase: Bridging the gap. Botanica. Acta. 109: 90-93.

    Google Scholar 

  • Rupp H-M., Frank M., Werner T., Strnad M. and Schmülling T. 1999. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18: 557-563.

    Google Scholar 

  • Schmülling T., Schäfer S. and Romanov G. 1997. Cytokinins as regulators of gene expression. Physiol. Plant 100: 505-519.

    Google Scholar 

  • Sheen J., Zhou L. and Jang J-C. 1999. Sugars as signaling molecules. Curr. Opin. Plant Biol. 2: 410-418.

    Google Scholar 

  • Simmons C.R., Litts J.C., Huang N. and Rodriguez R.L. 1992. Structure of a rice b-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol. Biol. 18: 33-45.

    Google Scholar 

  • Skoog F. and Armstrong D.J. 1970. Cytokinins. Annu. Rev. Plant Physiol. 21: 359-384.

    Google Scholar 

  • Skoog F. and Miller C.O. 1965. Chemical regulation of growth and organ formation in plant tissues cultures in vitro. In: Bell E. (ed.), Molecular and cellular aspects of development. Harper & Row, New York, pp. 481-494.

    Google Scholar 

  • Stitt M. and Sonnewald U. 1995. Regulation of Metabolism in Transgenic Plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46: 341-368.

    Google Scholar 

  • Sturm A. and Chrispeels M.J. 1990. cDNA cloning of carrot extracellular b-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 2: 1107-1119.

    Google Scholar 

  • Tang G-Q., Lüscher M. and Sturm A. 1999. Antisense repression and vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell. 11: 1-14.

    Google Scholar 

  • Tanner W. 1980. On the possible role of ABA on phloem unloading. Ber. Dtsch. Bot. Ges. 93: 349-351.

    Google Scholar 

  • Tanner W. and Caspari T. 1996. Membrane transport carriers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 595-626.

    Google Scholar 

  • Thimann K.V. and Satler S. 1979. Relation between senescence and stomatal opening: Senescence in the darkness. Proc. Natl. Acad. Sci. USA 76: 2770-2773.

    Google Scholar 

  • Tymowska-Lalanne Z. and Kreis M. 1998a. Expression of the Arabidopsis thaliana invertase gene family. Planta 207: 259-265.

    Google Scholar 

  • Tymowska-Lalanne Z. and Kreis M. 1998b. The plant invertases: Physiology, biochemistry and molecular biology. Adv. Bot. Res. 28: 71-117.

    Google Scholar 

  • Van Der Werf A. and Nagel O.W. 1996. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant and Soil. 185: 21-32.

    Google Scholar 

  • von Schaewen A., Stitt M., Schmidt R., Sonnewald U. and Willmitzer L. 1990. Expression of yeast-derived invertase in the cell wall of tobacco and Arabidopsis leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 9: 3033-3043.

    Google Scholar 

  • Weber H., Borisjuk L., Heim U., Buchner P. and Wobus U. 1995. Seed coat-associated invertases of faba bean control both unloading and storage functions: Cloning of cDNAs and cell type-specific expression. Plant Cell. 7: 1835-1846.

    Google Scholar 

  • Weber H., Borisjuk L. and Wobus U. 1997. Sugar import and metabolism during seed development. Trends. Plant Sci. 2: 169-174.

    Google Scholar 

  • Ying Z., Wu Y., Avigne W. and Koch K. 1999. Sugar responses of maize invertase genes are altered by cytokinins: whole plant implications for sugar sensing in a developmental context. In: Proceedings of the international conference on assimilate transport and partitioning, Newcastle, Australia., p. 197.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roitsch, T., Ehneß, R. Regulation of source/sink relations by cytokinins. Plant Growth Regulation 32, 359–367 (2000). https://doi.org/10.1023/A:1010781500705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010781500705

Navigation