Skip to main content
Log in

Oxygen sensors: Materials, methods, designs and applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advancement of gas sensor technology over the past few decades has led to significant progress in pollution control and thereby, to environmental protection. An excellent example is the control of automobile exhaust emissions, made possible by the use of oxygen gas sensors. Since early 1970's there have been sustained studies on oxygen sensors and has led to development of sensors for various applications with varying performance characteristics. Solid electrolyte based potentiometric, amperometric and metal oxide based semiconducting resistive type sensors are used for high temperature applications. For solution-based pollution monitoring, dissolved oxygen sensors based on Clark electrodes have played a major role. More recently, for biological and medical applications, optical oxygen sensors are beginning to have an impact. In this review, we focus on both high temperature as well as dissolved oxygen sensors and compare the different methods of oxygen sensing, discuss underlying principles, and outline the designs and specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Binder, Sensors and Actuators A 31 (1992) 60.

    Google Scholar 

  2. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, J. Electrochem. Soc. 139 (1992) 3690.

    Google Scholar 

  3. R. Kocache, Sensor Rev. 14 (1994) 8.

    Google Scholar 

  4. C. B. Alcock, Solid State Ionics 53–56 (1992) 3.

    Google Scholar 

  5. J. W. Schwank and M. Dibattista, MRS Bull. June (1999) 44.

  6. T. Takeuchi, Sensors and Actuators 14 (1988) 109.

    Google Scholar 

  7. J. Riegel, H. Neumann and H.-M. Wiedenmann, Solid State Ionics 152–153 (2002) 783.

    Google Scholar 

  8. N. M. Sammes, G. A. Tompett, H. NÄfe and F. Aldinger, J. Euro. Ceram. Soc. 19 (1999) 1801.

    Google Scholar 

  9. M. Mogensen, N. M. Sammes and G. A. Tompsett, Solid State Ionics 129 (2000) 63.

    Google Scholar 

  10. C. Xia and M. Liu, Adv. Mater. 14(7) (2002) 521.

    Google Scholar 

  11. N. M. Sammes and Z. Cai, Solid State Ionics 100 (1997) 39.

    Google Scholar 

  12. W. C. Maskell and B. C. H. Steele, J. Appl. Electrochem. 16 (1986) 475.

    Google Scholar 

  13. K. Nishio, in “The Fundamentals of Automotive Engine Control Sensors” (Fontis Media, The Netherlands, 2001).

    Google Scholar 

  14. R. Ramamoorthy, S. Ramasamy and D. Sundararaman, J. Mater. Res. 14 (1999) 90.

    Google Scholar 

  15. A. Mitterdorfer and L. J. Gauckler, Solid State Ionics 117 (1999) 187.

    Google Scholar 

  16. N. L. Robertson and J. N. Michaels, J. Electrochem. Soc. 137 (1990) 129.

    Google Scholar 

  17. H.-D. WiemhÖfer, in British Ceramic Proceedings on Ceramic Oxygen Ion Conductors and Their Technological Applications, No. 56, edited by B. C. H. Steele (The Institute of Materials, 1997).

  18. E. I. Tiffee, K. H. Hardtl, W. Menesklou and J. Riegel, Electrochim. Acta 47 (2001) 807.

    Google Scholar 

  19. A. G. Motimer and G. P. Reed, Sensors and Actuators B 24/25 (1995) 328.

    Google Scholar 

  20. A. K. M. S. Chowdhry, S. A. Akbar and J. R. Schorr, J. Electrochem. Soc. 148(2) (2001) G91.

    Google Scholar 

  21. E. V. Setten, T. M. GÜr, D. H. A. Blank, J. C. Bravman and M. R. Beasley, Rev. Sci. Instr. 73 (2002) 156.

    Google Scholar 

  22. A. D. Brailsford and E. M. Logothetis, Sensors and Actuators B 52 (1998) 195.

    Google Scholar 

  23. M. L. Hitchman, in “Measurement of Dissolved Oxygen” (John Wiley & Sons, New York, 1978).

    Google Scholar 

  24. G. Reinhardt, R. Mayer and M. RÖsch, Solid State Ionics 150 (2002) 79.

    Google Scholar 

  25. T. Usui, A. Asada, M. Nakazawa and H. Osanai, J. Electrochem. Soc. 136 (1989) 534.

    Google Scholar 

  26. T. Usui, K. Nuri, M. Nakazawa and H. Osanai, Jpn. J. Appl. Phys. 26 (1987) L2061.

    Google Scholar 

  27. W. C. Maskell, Solid State Ionics 134 (2000) 43.

    Google Scholar 

  28. M. Benammar, Meas. Sci. Tech. 5 (1994) 757.

    Google Scholar 

  29. R. C. Copcutt and W. C. Maskell, Solid State Ionics 53–56 (1992) 119.

    Google Scholar 

  30. R. E. Hetrick, W. A. Fate and W. C. Vassell, Appl. Phys. Lett. 38 (1981) 390.

    Google Scholar 

  31. P. R. Warburton, M. P. Pagano, R. Hoover, M. Logman and K. Crytzer, Anal. Chem. 70 (1998) 998.

    Google Scholar 

  32. F. Garzon, I. Raistrick, E. Brosha, R. Houlton and B. W. Chung, Sensors and Actuators B 50 (1998) 125.

    Google Scholar 

  33. Z. Peng, M. Liu and Ed. Balko, ibid. 72 (2001) 35.

    Google Scholar 

  34. S. Yu, Q. Wu, M. T-. Azar and C.-C. Liu, ibid. 85 (2002) 212.

    Google Scholar 

  35. D. E. Williams, ibid. 57 (1999) 1.

    Google Scholar 

  36. U. Lampe, M. Fleischer, N. Reitmeier and H. Meixner, in “Sensors Update,” edited by H. Baltes, W. Göpel and J. Hesse (VCH, New York, 1996).

    Google Scholar 

  37. Y. Xu, X. Zhou and O. T. Sorensen, Sensors and Actuators B 65 (2000) 2.

    Google Scholar 

  38. J. Gerblinger, W. Lohwasser, U. Lampe and H. Meixner, ibid. 26–27 (1995) 93.

    Google Scholar 

  39. A. Kohli, C. C. Wang and S. A. Akbar, ibid. 56 (1999) 121.

    Google Scholar 

  40. N.-H. Chan, R. K. Sharma and D. M. Smyth, J. Electrochem. Soc. August (1981) 1762.

  41. G. Sberveglieri, Sensors and Actuators B 23 (1995) 103.

    Google Scholar 

  42. P. T. Moseley and A. J. Crocker, “Sensor Materials” (IOP Publishing, Bristol, 1996).

    Google Scholar 

  43. P. T. Moseley, Sensors and Actuators B 6 (1992) 149.

    Google Scholar 

  44. A. Takami, Ceram. Bull. 67 (1988) 1956.

    Google Scholar 

  45. D. M. Smyth, “The Defect Chemistry of Metal Oxides” (Oxford University Press, New York, 2000).

    Google Scholar 

  46. M. Li and Y. Chen, Sensors and Actuators B 32 (1996) 83.

    Google Scholar 

  47. J. Zhu, C. Ren, G. Chen, C. Yu, J. Wu and H. Mu, ibid. 32 (1996) 209.

    Google Scholar 

  48. W. Menesklou, H-J. Schreiner, K. H. HÄrdtl and E. I. Tiffee, ibid. 59 (1999) 184.

    Google Scholar 

  49. F. Millot and P. De Mierry, J. Phys. Chem. Solids 46 (1985) 797.

    Google Scholar 

  50. N. Izu, W. Shin, N. Murayama and S. Kanzaki, Sensors and Actuators B 87 (2002) 95.

    Google Scholar 

  51. S. V. Manorama, N. Izu, W. Shin, I. Matsubara and N. Murayama, ibid. 89 (2003) 299.

    Google Scholar 

  52. S. Suzuki, Y. Noda and N. Sawaki, Sensors Update 6(1) (1999) 381.

    Google Scholar 

  53. Y. Noda, S. Ishikawa, N. Hayakawa, S. Kawariji and H. Iimi, in JSAE Spring Convention Proc. 9832017 (1998) p. 101.

  54. Bosch Oxygen Sensors: http://www.forparts.com/Bos02update2.htm

  55. M. Smiddy, N. Papkovskaia, D. B. Papkovsky and J. P. Kerry, Food Res. Int. 35 (2002) 577.

    Google Scholar 

  56. C. Preininger, I. Klimant and O. S. Wofbeis, Anal. Chem. 66 (1994) 1841.

    Google Scholar 

  57. http:/www.eutechinst.com/techtips/tech-tips16.htm

  58. X. Lu and M. A. Winnik, Chem. Mater. 13 (2001) 3449.

    Google Scholar 

  59. C. Kolle, W. Gruber, W. Trettnak, K. Biebernik, C. Dolezal, F. Reininger and P. O. Leary, Sensors and Actutors B 38–39 (1997) 141.

    Google Scholar 

  60. B. R. Eggins, in “Chemical Sensors and Biosensors” (John Wiley & Sons, England, 2002) p. 53.

    Google Scholar 

  61. D. G. Fresnadillo, M. D. Marazuela, M. C. M. Bondi and G. Orellana, Langmuir 15 (1999) 6451.

    Google Scholar 

  62. A. Mills, Sensors and Actutors B 51 (1998) 60.

    Google Scholar 

  63. I. Bergman, Nature 218 (1968) 396.

    Google Scholar 

  64. E. R. Carraway, J. N. Demas, B. A. Degraff and J. R. Bacon, Anal. Chem. 63 (1991) 337.

    Google Scholar 

  65. Y. Amao and I. Okura, Sensors and Actuators B 88 (2003) 162.

    Google Scholar 

  66. P. Douglas and K. Eaton, ibid. 82 (2002) 200.

    Google Scholar 

  67. J. R. Bacon and J. N. Demas, Anal. Chem. 59 (1987) 2780.

    Google Scholar 

  68. H. Chuang and M. A. Arnold, Anal. Chim. Acta 368 (1998) 83.

    Google Scholar 

  69. A. Mills, The Analyst 124 (1999) 1301.

    Google Scholar 

  70. D. B. Papkovsky, Sensors and Actuators B 29 (1995) 213.

    Google Scholar 

  71. S.-K. Lee and I. Okura, The Analyst 122 (1997) 81.

    Google Scholar 

  72. K. Eaton and P. Douglas, Sensors and Actuators B 82 (2002) 94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamoorthy, R., Dutta, P.K. & Akbar, S.A. Oxygen sensors: Materials, methods, designs and applications. Journal of Materials Science 38, 4271–4282 (2003). https://doi.org/10.1023/A:1026370729205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026370729205

Keywords

Navigation