Skip to main content
Log in

Effects of Short-term Spontaneous Mutation Accumulation for Life History Traits in Grape Phylloxera, Daktulosphaira vitifoliae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mutation is the source of all genetic variation, but rate of input and effects of new mutations for phenotypic traits related to fitness and the role they play in the maintenance of genetic variation are still subject to controversy. These parameters are important in models of the evolution of sex and recombination, the persistence of asexual populations, and the extinction of small populations. Most estimates have come from a few model organisms. Here, mutation accumulation experiments were conducted with three clones of grape phylloxera, Daktulosphaira vitifoliae Fitch, a gall forming herbivore and pest of grapes, to estimate the rate of input and effects of spontaneous mutation on life history traits. This is perhaps the first such experiment using a non-model organism of economic importance. Significant heritable genetic variation accrued in one of three sets of lines for one of four traits measured, and deleterious effects of mutation were found for two of four traits in two of the three sets of lines. Estimates of the parameters by the Bateman–Mukai (BM) method were within the range found in previous studies but at the lower end for genomic mutation rate, U ∼ 0.023 and mutational variance, V M ∼ 0.0003, the upper end for average heterozygous effect, α, of ∼ −0.11, and on the order of previous estimates for mutational heritability, h M ∼ 0.007. Under a model of equal effects of mutations, maximum likelihood (ML) estimates of U were slightly higher, and of α lower, than the BM estimates. Support limits were too large to provide much confidence in the ML estimates, however, and models of mutational effects assuming a gamma distribution of effects under different values of the shape parameter, β, could not be distinguished though likelihoods tended to be lower at lower values of β (more leptokurtic). Rapid accumulation of deleterious mutations suggest that for many pest species, adaptive response under agricultural conditions may depend more on the standing variation derived from introductions than new mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337–370.

    PubMed  Google Scholar 

  • Batallon, T., 2000. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84: 497–501.

    PubMed  Google Scholar 

  • Bateman, A.J., 1959. The viability of near-normal irradiated chromosomes. Int. J. Radiat. Biol. 1: 170–180.

    Google Scholar 

  • Bulmer, M.G., 1989. Maintenance of genetic variability by mutation-selection balance: a child's guide through the jungle. Genome 31: 761–767.

    Google Scholar 

  • Cognetti, G., 1961. Endomeiosis in parthenogenetic lines of aphids. Experientia 17: 168–169.

    PubMed  Google Scholar 

  • Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, NJ.

    Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. Alpha Editions, Edina, MN.

    Google Scholar 

  • De Benedictis, J.A. & J. Granett, 1992. Variability of responses of grape phylloxera to bioassays that discriminate between California biotypes. J. Econ. Entomol. 85: 1527–1534.

    Google Scholar 

  • De Benedictis, J.A., J. Granett & S.P. Taormino, 1996. Differences in host utilization by California strains of grape phylloxera. Am. J. Enol. Viticult. 47: 1–7.

    Google Scholar 

  • Deng, H.W. & J. Li, 2001. Comparison of two analysis methods for mutation accumulation experiments: maximum likelihood and method of moments. Life Sci. Res. 5: 189–201.

    Google Scholar 

  • Deng, H.W., J. Li & J.-L. Li, 1999. On the experimental design and data analysis of mutation accumulation experiments. Genet. Res. 73: 147–164.

    PubMed  Google Scholar 

  • Drake, J.W., B. Charlesworth, D. Charlesworth & J.F. Crow, 1998. Rates of spontaneous mutation. Genetics 148: 1667–1686.

    PubMed  Google Scholar 

  • Fergusson-Kolmes, L. & T.J. Dennehy, 1991. Differences in host utilization by populations of North American grape phylloxera. J. Econ. Entomol. 86: 1502–1511.

    Google Scholar 

  • Fernandez, J. & C. Lopez-Fanjul, 1997. Spontaneous mutational genotype-environment interaction for fitness related traits in Drosophila melanogaster. Evolution 51: 856–864.

    Google Scholar 

  • Force, A., M. Lynch, F. Pickett, F. Bryan, A. Amores, Y. Yan & J. Postlethwait, 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.

    PubMed  Google Scholar 

  • Forneck, A., Y. Jin, M.A. Walker & R. Blaich, 1999. Karyotype studies on grape phylloxera. Vitis 38: 123–125.

    Google Scholar 

  • Fry, J.D., S.L. Heinsohn & T.F.C. MacKay, 1996. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50: 2316–2337.

    Google Scholar 

  • Fry, J.D., P.D. Keightly, S.L. Heinsohn & S.V. Nuzhdin, 1999. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. P. Natl. Acad. Sci. 96: 574–579.

    Google Scholar 

  • Granett, J., B. Bisabri & J. Carey, 1983. Life tables of phylloxera on resistant and susceptible grape roots. Entomol. Exp. Appl. 34: 13–19.

    Google Scholar 

  • Granett, J., P. Timper & L.A. Lider, 1985. Grape phylloxera biotypes in California. J. Econ. Entomol. 78: 1463–1467.

    Google Scholar 

  • Hartl, D.L. & A.G. Clark, 1989. Principles of Population Genetics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hartl, D.L. & C.H. Taubes, 1998. Towards a theory of evolutionary adaptation. Genetica 102/103: 525–533.

    Google Scholar 

  • Houle, D., K.A. Hughes, D.K. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of spontaneous mutation on quantitative traits. I. Variance and covariance of life history traits. Genetics 138: 773–785.

    PubMed  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational heritabilities. Genetics 143: 1467–1483.

    PubMed  Google Scholar 

  • Houle, D., K.A. Hughes, S. Assimacopoulos & B. Charlesworth, 1997. The effects of spontaneous mutations on quantitative traits II. Dominance of mutations with effects on life history traits. Genet. Res. 70: 27–34.

    PubMed  Google Scholar 

  • Keightley, P.D., 1996. The nature of the deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  Google Scholar 

  • Keightley, P.D. & T.M. Batallon, 2000. Multigeneration maximum likelihood analysis applied to mutation-accumulation experiments in Caenorhabditis elegans. Genetics 154: 1193–1201.

    PubMed  Google Scholar 

  • Keightley, P.D. & A. Caballero, 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. P. Natl. Acad. Sci. USA 94: 3823–3827.

    Google Scholar 

  • Keightley, P.D. & A. Eyre-Walker, 1999. Terumi Mukai and the riddle of deleterious mutation rates. Genetics 153: 515–523.

    PubMed  Google Scholar 

  • Keightley, P.D. & O. Ohnishi, 1998. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148: 753–766.

    PubMed  Google Scholar 

  • Keightley, P.D., T.F.C. MacKay & A. Caballero, 1993. Accounting for the bias in estimates of the rate of polygenic mutation. P. Roy. Soc. Lond. B 253: 291–296.

    Google Scholar 

  • Kibota, T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in Esherichia coli. Nature 381: 694–696.

    PubMed  Google Scholar 

  • King, P.D. & G. Rilling, 1985. Variations in the galling reactions of grape vines: evidence of phylloxera biotypes and clonal reaction to phylloxera. Vitis 24: 32–42.

    Google Scholar 

  • Kondrashov, A.S. & D. Houle, 1994. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. P. Roy. Soc. Lond. B 258: 221–227.

    Google Scholar 

  • Lin, H., D.A. Downie, M.A. Walker, J. Granett & G. English-Loeb, 1999. Genetic structure in native populations of grape phylloxera. Ann. Entmol. Soc. Am. 92: 376–381.

    Google Scholar 

  • Lynch, M., 1985. Spontaneous mutations for life history characters in an obligate parthenogen. Evolution 39: 804–818.

    Google Scholar 

  • Lynch, M. & A. Force, 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459–473.

    PubMed  Google Scholar 

  • Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva & J. Willis, 1999. Perspective: spontaneous deleterious mutation. Evolution 53: 645–663.

    Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & W.G. Hill, 1995. Polygenic mutation in Drosophila melanogaster: non-linear divergence among unselected strains. Genetics 139: 849–859.

    PubMed  Google Scholar 

  • Maillet, P., 1957. —Contribution l'étude de la biologie du Phylloxera de la vigne. Ann. Sci. Nat. Zool. 19: 283–410.

    Google Scholar 

  • Mandrioli, M., G.C. Manicardi, D. Bizzaro & U. Bianchi, 1999. NOR heteromorphism within a parthenogenetic lineage of the aphid Megoura viciae. Chromosome Res.7: 157–162.

    PubMed  Google Scholar 

  • Morgan, T.H., 1909. Sex determinism and parthenogenesis in phylloxerans and aphids. Science 29: 234–237.

    Google Scholar 

  • Morgan, K.K., J. Hicks, K. Spitz, L. Latta, M.E. Pfrender, C.S. Weaver, M. Ottone & M. Lynch, 2001. Patterns of genetic architecture for life history traits and molecular markers in a subdivided species. Evolution 55: 1753–1761.

    PubMed  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    PubMed  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355.

    PubMed  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2–9.

    Google Scholar 

  • Omer, A.D., J. Granett, D.A. Downie & M.A. Walker, 1997. Population dynamics of grape phylloxera in California vineyards. Vitis 36: 199–205.

    Google Scholar 

  • Pletcher, S.D., D. Houle & J.W. Curtsinger, 1998. Age-specific properties of spontaneous mutation affecting mortality in Drosophila melanogaster. Genetics 148: 287–303.

    PubMed  Google Scholar 

  • Shabalina, S.A., L.Y. Yampolsky & A.S. Kondrashov, 1997. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. P. Natl. Acad. Sci. 94: 13034–13039.

    Google Scholar 

  • Song, G. & J. Granett, 1990. Grape phylloxera biotypes in France. J. Econ. Entomol. 83: 489–493.

    Google Scholar 

  • Vassilieva, L. & M. Lynch, 1999. The rate of spontaneous mutation for life history traits in Caenorabditis elegans. Genetics 151: 119–129.

    PubMed  Google Scholar 

  • Yampolsky, L.V., L.E. Pearse & D.E.L. Promislow, 2001. Agespecific effects of novel mutations in Drosophila melanogaster. Genetica 110: 11–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downie, D. Effects of Short-term Spontaneous Mutation Accumulation for Life History Traits in Grape Phylloxera, Daktulosphaira vitifoliae . Genetica 119, 237–251 (2003). https://doi.org/10.1023/B:GENE.0000003610.73205.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000003610.73205.c7

Navigation