Regulation of malate metabolism in grape berry and other developing fruits

Phytochemistry. 2009 Jul-Aug;70(11-12):1329-44. doi: 10.1016/j.phytochem.2009.08.006. Epub 2009 Sep 15.

Abstract

Organic acids are present in all plants, supporting numerous and varied facets of cellular metabolism. The type of organic acid found, and the levels to which they accumulate are extremely variable between species, developmental stages and tissue types. Acidity plays important roles in the organoleptic properties of plant tissues, where examples of both enhanced and reduced palatability can be ascribed to the presence of specific organic acids. In fruits, sourness is generally attributed to proton release from acids such as citric, malic, oxalic, quinic, succinic and tartaric, while the anion forms each contribute a distinct taste. Acidity imposes a strong influence on crop quality, and is an important factor in deciding the harvest date, particularly for fruits where acidity is important for further processing, as in wine grapes. In the grape, as for many other fruits, malate is one of the most prevalent acids, and is an important participant in numerous cellular functions. The accumulation of malate is thought to be due in large part to de novo synthesis in fruits such as the grape, through metabolism of assimilates translocated from leaf tissues, as well as photosynthetic activity within the fruit itself. During ripening, the processes through which malate is catabolised are of interest for advancing metabolic understanding, as well as for potential crop enhancement through agricultural or molecular practices. A body of literature describes research that has begun to unravel the regulatory mechanisms of enzymes involved in malate metabolism during fruit development, through exploration of protein and gene transcript levels. Datasets derived from a series of recent microarray experiments comparing transcript levels at several stages of grape berry development have been revisited, and are presented here with a focus on transcripts associated with malate metabolism. Developmental transcript patterns for enzymes potentially involved in grape malate metabolism have shown that some flux may occur through pathways that are less commonly regarded in ripening fruit, such as aerobic ethanol production. The data also suggest pyruvate as an important intermediate during malate catabolism in fruit. This review will combine an analysis of microarray data with information available on protein and enzyme activity patterns in grapes and other fruits, to explore pathways through which malate is conditionally metabolised, and how these may be controlled in response to developmental and climatic changes. Currently, an insufficient understanding of the complex pathways through which malate is degraded, and how these are regulated, prevents targeted genetic manipulation aimed at modifying fruit malate metabolism in response to environmental conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Fruit / genetics
  • Fruit / metabolism*
  • Gene Expression
  • Malates / metabolism*
  • Microarray Analysis
  • Mitochondria / enzymology
  • Pyruvic Acid / metabolism
  • Vitis / genetics
  • Vitis / metabolism*

Substances

  • Malates
  • malic acid
  • Pyruvic Acid